检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:H. Nagarathnamma A. Pavithra C. E. Nanjundappa S. P. Suma
机构地区:[1]Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, India [2]Department of Mathematics, Cambridge College of Engineering, Bangalore, India
出 处:《Journal of Electromagnetic Analysis and Applications》2018年第5期88-105,共18页电磁分析与应用期刊(英文)
摘 要:Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.
关 键 词:Bénard-Maranagoni MICROPOLAR FERROFLUID GALERKIN Method Penetrative CONVECTION Internal HEATING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.128.179