机构地区:[1]The Pennsylvania State University, University College, York, USA
出 处:《Journal of Electromagnetic Analysis and Applications》2021年第7期103-110,共8页电磁分析与应用期刊(英文)
摘 要:It is a common misconception that electric “resistance” always is a positive defined electric element. <em>i.e.</em>, the plot of the voltage across the resistor, V vs. its current, i is a slanted straight line with a positive slope. Esaki diode also known as tunnel diode is an exception to this character. For a certain voltage range, the current recedes resulting in a line with a negative slope;it is interpreted as negative resistance. In this research flavored report, we investigate the impact of the negative resistance in a typical classic electric circuit. E.g., a tunnel diode, D is inserted in a classic electric circuit that is composed of an ohmic resistor, R and a capacitor, C which are all in series with a DC power supply. The circuit equation for the RCD circuit is a nonlinear ordinary differential equation (NLODE). In line with the ever-growing popular Computer Algebra System (CAS), this is solved numerically utilizing two distinctly different CASs. The consistency of the solutions confidently leads to the understanding of the impact of the negative resistance. The circuit characteristics are compared to the classic analogous RC circuit. The report embodies an atlas of characteristics of the circuits making the analysis visually comprehensible.It is a common misconception that electric “resistance” always is a positive defined electric element. <em>i.e.</em>, the plot of the voltage across the resistor, V vs. its current, i is a slanted straight line with a positive slope. Esaki diode also known as tunnel diode is an exception to this character. For a certain voltage range, the current recedes resulting in a line with a negative slope;it is interpreted as negative resistance. In this research flavored report, we investigate the impact of the negative resistance in a typical classic electric circuit. E.g., a tunnel diode, D is inserted in a classic electric circuit that is composed of an ohmic resistor, R and a capacitor, C which are all in series with a DC power supply. The circuit equation for the RCD circuit is a nonlinear ordinary differential equation (NLODE). In line with the ever-growing popular Computer Algebra System (CAS), this is solved numerically utilizing two distinctly different CASs. The consistency of the solutions confidently leads to the understanding of the impact of the negative resistance. The circuit characteristics are compared to the classic analogous RC circuit. The report embodies an atlas of characteristics of the circuits making the analysis visually comprehensible.
关 键 词:Tunnel Diode Negative Electric Resistance Computer Algebra System Mathematica Maple
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...