Low-Speed Aerodynamic Characteristics of Supercritical Airfoil with Small High-Lift Devices from Flow Pattern Measurements  

Low-Speed Aerodynamic Characteristics of Supercritical Airfoil with Small High-Lift Devices from Flow Pattern Measurements

在线阅读下载全文

作  者:Thai Duong Nguyen Masashi Kashitani Masato Taguchi Thai Duong Nguyen;Masashi Kashitani;Masato Taguchi(Aerospace Department, National Defense Academy of Japan, Yokosuka, Japan)

机构地区:[1]Aerospace Department, National Defense Academy of Japan, Yokosuka, Japan

出  处:《Journal of Flow Control, Measurement & Visualization》2020年第4期159-172,共14页流量控制、测量及可视化(英文)

摘  要:In this paper, the lift coefficients of SC-0414 airfoil are estimated by applying modified Yamana’s method to the flow visualization results, which are obtained by utilizing the smoke tunnel. The application of the modified Yamana’s method is evaluated with two calculation methods. Additionally, the lift estimation, wake measurements, and numerical simulations are performed to clarify the low-speed aerodynamic characteristics of the SC airfoil with flaps. The angle of attack was varied from <span style="white-space:nowrap;">&#8722;</span>5<span style="white-space:nowrap;">&#176;</span> to 8<span style="white-space:nowrap;">&#176;</span>. The flow velocity was 12 m/s and the Reynolds number was 1.6 × 10<sup>5</sup>. As a result, the estimated lift coefficients show a good agreement with the results from reference data and numerical simulations. In clean condition, the lift coefficients calculated from the two methods show quantitative agreement, and no significant difference could be confirmed. However, the slope of the lifts calculated from <em>y</em><sub>s</sub> is higher and closer to the reference data than those obtained from s<em>c</em>, where <em>y</em><sub>s</sub> denotes the height where the distance from the streamline to the reference line is the largest, and s<em>c</em> denotes the displacement of the center of pressure from the origin of the coordinate, respectively. In the case of flaps, the GFs have an observable effect on the aerodynamic performance of the SC-0414 airfoil. When the height of the flap was increased, the lift and drag coefficients increased. The installation of a GF with a height equal to 1% of the chord length of the airfoil significantly improved the low-speed aerodynamic performance of SC airfoils.In this paper, the lift coefficients of SC-0414 airfoil are estimated by applying modified Yamana’s method to the flow visualization results, which are obtained by utilizing the smoke tunnel. The application of the modified Yamana’s method is evaluated with two calculation methods. Additionally, the lift estimation, wake measurements, and numerical simulations are performed to clarify the low-speed aerodynamic characteristics of the SC airfoil with flaps. The angle of attack was varied from <span style="white-space:nowrap;">&#8722;</span>5<span style="white-space:nowrap;">&#176;</span> to 8<span style="white-space:nowrap;">&#176;</span>. The flow velocity was 12 m/s and the Reynolds number was 1.6 × 10<sup>5</sup>. As a result, the estimated lift coefficients show a good agreement with the results from reference data and numerical simulations. In clean condition, the lift coefficients calculated from the two methods show quantitative agreement, and no significant difference could be confirmed. However, the slope of the lifts calculated from <em>y</em><sub>s</sub> is higher and closer to the reference data than those obtained from s<em>c</em>, where <em>y</em><sub>s</sub> denotes the height where the distance from the streamline to the reference line is the largest, and s<em>c</em> denotes the displacement of the center of pressure from the origin of the coordinate, respectively. In the case of flaps, the GFs have an observable effect on the aerodynamic performance of the SC-0414 airfoil. When the height of the flap was increased, the lift and drag coefficients increased. The installation of a GF with a height equal to 1% of the chord length of the airfoil significantly improved the low-speed aerodynamic performance of SC airfoils.

关 键 词:Supercritical Airfoil Gurney Flap Potential Flow Flow Visualization 

分 类 号:V21[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象