Drag Coefficient of a Non-Convex Polygonal Plate during Free Fall  

Drag Coefficient of a Non-Convex Polygonal Plate during Free Fall

在线阅读下载全文

作  者:Yoshihiro Kubota Yuhei Endo Yoshihiro Kubota;Yuhei Endo(Department of Mechanical Engineering, Toyo University, Kawagoe, Japan;Graduate School of Science and Engineering, Toyo University, Kawagoe, Japan)

机构地区:[1]Department of Mechanical Engineering, Toyo University, Kawagoe, Japan [2]Graduate School of Science and Engineering, Toyo University, Kawagoe, Japan

出  处:《Journal of Flow Control, Measurement & Visualization》2023年第1期1-13,共13页流量控制、测量及可视化(英文)

摘  要:Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities.Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities.

关 键 词:Drag Coefficients Freefall Image Analysis Non-Convex Polygonal Plate Unsteady Motion Vortex Formation 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象