Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity  

Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity

在线阅读下载全文

作  者:A. Plastino[1] M. C. Rocca[1] 

出  处:《Journal of High Energy Physics, Gravitation and Cosmology》2020年第2期298-311,共14页高能物理(英文)

摘  要:We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field ∅μν=γμν∅, where γμνis a constant tensor and ∅a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field ∅μν=γμν∅, where γμνis a constant tensor and ∅a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].

关 键 词:Quantum Field Theory EINSTEIN GRAVITY Non-Renormalizable Theories UNITARITY 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象