Hecke-Langlands Duality and Witten’s Gravitational Moonshine  

Hecke-Langlands Duality and Witten’s Gravitational Moonshine

在线阅读下载全文

作  者:Igor Yu. Potemine Igor Yu. Potemine(Institut de Mathématiques, Université Paul Sabatier, Toulouse, France)

机构地区:[1]Institut de Mathématiques, Université Paul Sabatier, Toulouse, France

出  处:《Journal of High Energy Physics, Gravitation and Cosmology》2021年第2期391-402,共12页高能物理(英文)

摘  要:The purpose of this research is to give a dual description of conformal blocks of <i>d</i>=2 rational CFT (conformal field theory) in terms of Hecke eigenforms and eigensheaves. In particular, partition functions, conformal characters and lattice theta functions may be reconstructed from the action of Hecke operators. This method can be applied to: 1) rings of integers of Galois number fields equipped with the trace (or anti-trace) form;2) root lattices of affine Kac-Moody algebras and WZW-models;3) minimal models of Belavin-Polyakov-Zamolodchikov and related <i>d</i>=2 spin-chain/lattice models;4) vertex algebras of Leech and Niemeier lattices and others. We also use the original Witten’s idea to construct the 3-dimensional quantum gravity as the AdS/CFT-dual of <i>c</i>=24 Monster vertex algebra of Frenkel-Lepowsky- Meurman. Concerning the geometric Langlands duality, we use results of Beilinson-Drinfeld, Frenkel-Ben-Zvi, Gukov-Kapustin-Witten and many others (<i>cf.</i> references). The main new result in this paper is the construction of number-theoretical lattice vertex superalgebras in Section 5 and applications to conformal field theories and quantum gravity.The purpose of this research is to give a dual description of conformal blocks of <i>d</i>=2 rational CFT (conformal field theory) in terms of Hecke eigenforms and eigensheaves. In particular, partition functions, conformal characters and lattice theta functions may be reconstructed from the action of Hecke operators. This method can be applied to: 1) rings of integers of Galois number fields equipped with the trace (or anti-trace) form;2) root lattices of affine Kac-Moody algebras and WZW-models;3) minimal models of Belavin-Polyakov-Zamolodchikov and related <i>d</i>=2 spin-chain/lattice models;4) vertex algebras of Leech and Niemeier lattices and others. We also use the original Witten’s idea to construct the 3-dimensional quantum gravity as the AdS/CFT-dual of <i>c</i>=24 Monster vertex algebra of Frenkel-Lepowsky- Meurman. Concerning the geometric Langlands duality, we use results of Beilinson-Drinfeld, Frenkel-Ben-Zvi, Gukov-Kapustin-Witten and many others (<i>cf.</i> references). The main new result in this paper is the construction of number-theoretical lattice vertex superalgebras in Section 5 and applications to conformal field theories and quantum gravity.

关 键 词:Conformal Field Theory Modular Invariance Quantum Gravity S-Duality Vertex Algebra 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象