A Novelty Solution to the Neutron Anomaly (An Anomalous Neutron or “Dark”?)  

A Novelty Solution to the Neutron Anomaly (An Anomalous Neutron or “Dark”?)

在线阅读下载全文

作  者:Giovanni Guido Abele Bianchi Giovanni Guido;Abele Bianchi(Retired Teacher of C. Cavalleri, Parabiago, Milano, Italy;Retired Teacher of Gandini, Lodi, Milano, Italy)

机构地区:[1]Retired Teacher of C. Cavalleri, Parabiago, Milano, Italy [2]Retired Teacher of Gandini, Lodi, Milano, Italy

出  处:《Journal of High Energy Physics, Gravitation and Cosmology》2023年第1期353-378,共26页高能物理(英文)

摘  要:To explain the anomaly (τ<sub>b</sub> ≠ τ<sub>f</sub>) of the neutron lifetime τ in some experiments, in “bottle” τ<sub>b</sub> and in “beam” τ<sub>f</sub>, we resort to an anomalous form of the neutron n<sub>a</sub>. This form belongs to one of two different states of the structure of the quark configurations making up the neutron (nucleon): first, an ordinary form Ψ<sub>o</sub>, while the second is an “anomalous” form Ψ<sub>a</sub>, difficult to detect and decay. If the ordinary configuration is present in everyone nuclear processes, to strong and weak interactions, and in diffusion processes, the anomalous form can emerge, in casual way and probabilistic, in some processes of fusion with production of neutrons and can be highlighted in some experiments as those in “bottle” and in “beam”, see the anomaly of the neutron lifetime. We show that the anomalous form Ψ<sub>a</sub> can be highlighted in the coupling between a dipoles’ lattice of virtual bosons W and the neutron (nucleon) because the neutron into anomalous configuration does not decays. Finally, we interpret the anomalous neutron as a “dark” neutron, presenting, so, the dark matter as an anomalous form of hadron matter.To explain the anomaly (τ<sub>b</sub> ≠ τ<sub>f</sub>) of the neutron lifetime τ in some experiments, in “bottle” τ<sub>b</sub> and in “beam” τ<sub>f</sub>, we resort to an anomalous form of the neutron n<sub>a</sub>. This form belongs to one of two different states of the structure of the quark configurations making up the neutron (nucleon): first, an ordinary form Ψ<sub>o</sub>, while the second is an “anomalous” form Ψ<sub>a</sub>, difficult to detect and decay. If the ordinary configuration is present in everyone nuclear processes, to strong and weak interactions, and in diffusion processes, the anomalous form can emerge, in casual way and probabilistic, in some processes of fusion with production of neutrons and can be highlighted in some experiments as those in “bottle” and in “beam”, see the anomaly of the neutron lifetime. We show that the anomalous form Ψ<sub>a</sub> can be highlighted in the coupling between a dipoles’ lattice of virtual bosons W and the neutron (nucleon) because the neutron into anomalous configuration does not decays. Finally, we interpret the anomalous neutron as a “dark” neutron, presenting, so, the dark matter as an anomalous form of hadron matter.

关 键 词:ANOMALY Anomalous Neutron Dark Neutron Geometric Structure Discrepancy Bosons’ Lattice Weak Decay 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象