A General Relativistic Approach for Non-Perturbative QCD  

A General Relativistic Approach for Non-Perturbative QCD

在线阅读下载全文

作  者:Usha Raut Usha Raut(Department of Physics, MSOE University, Milwaukee, WI, USA)

机构地区:[1]Department of Physics, MSOE University, Milwaukee, WI, USA

出  处:《Journal of High Energy Physics, Gravitation and Cosmology》2023年第4期917-940,共24页高能物理(英文)

摘  要:The formation of mini black holes is now considered to be a well-established and inescapable consequence of TeV scale particle collision scenarios in extra-dimensional/ADD models. Further, such mini black holes have been predicted to be produced at prodigious rates, of several thousand per year. Therefore, the continued null results from detector searches so far, including the most recent LHC runs of √s = 14 TeV, seem to suggest that new ideas may be critical for further advances in high energy physics. In this manuscript, we use a geometrical algorithm, inspired by general relativity, in particular Kerr-Newman de-Sitter black holes, to explore the non-perturbative (infra-red) sector of QCD. This has led us to a novel and more refined search criteria for LHC data compared to previous methods. We also explain why the current search has yielded null results. Our predictions are readily testable at detector sites. More importantly, our approach provides promising solutions to several long-standing problems, such as the hierarchy problem, problems with the continued failed attempts to integrate gravity into the standard model, and finally quark confinement.The formation of mini black holes is now considered to be a well-established and inescapable consequence of TeV scale particle collision scenarios in extra-dimensional/ADD models. Further, such mini black holes have been predicted to be produced at prodigious rates, of several thousand per year. Therefore, the continued null results from detector searches so far, including the most recent LHC runs of √s = 14 TeV, seem to suggest that new ideas may be critical for further advances in high energy physics. In this manuscript, we use a geometrical algorithm, inspired by general relativity, in particular Kerr-Newman de-Sitter black holes, to explore the non-perturbative (infra-red) sector of QCD. This has led us to a novel and more refined search criteria for LHC data compared to previous methods. We also explain why the current search has yielded null results. Our predictions are readily testable at detector sites. More importantly, our approach provides promising solutions to several long-standing problems, such as the hierarchy problem, problems with the continued failed attempts to integrate gravity into the standard model, and finally quark confinement.

关 键 词:General Relativity Hierarchy Problem LHC Phenomenology New Black Hole Search Gravitational Waves 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象