检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Alexander N. Safronov Alexander N. Safronov(Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia)
机构地区:[1]Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
出 处:《Journal of High Energy Physics, Gravitation and Cosmology》2024年第2期647-680,共34页高能物理(英文)
摘 要:Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstellar missions, the terrestrial and solar abundances were compared with considerable number of stars allocated in the ~200 pc solar neighborhood. According to the value of the effective temperature, four stellar classes are distinguished, for which the correlation coefficients and standard deviation are calculated. The statement about the possibility of transferring heavy elements synthesized by stars over long distances in space has been completely refuted. There is no immutability of the distribution of elements on neighboring stars and in the Solar System. It is shown that chemical elements are mainly synthesized inside each stellar reactor. The theory of the buoyancy of elements is generalized to stars. It has been suggested that stars overheat due to a shift in the parameters of nuclear processes occurring inside stars, which leads to the synthesis of heavy elements.Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstellar missions, the terrestrial and solar abundances were compared with considerable number of stars allocated in the ~200 pc solar neighborhood. According to the value of the effective temperature, four stellar classes are distinguished, for which the correlation coefficients and standard deviation are calculated. The statement about the possibility of transferring heavy elements synthesized by stars over long distances in space has been completely refuted. There is no immutability of the distribution of elements on neighboring stars and in the Solar System. It is shown that chemical elements are mainly synthesized inside each stellar reactor. The theory of the buoyancy of elements is generalized to stars. It has been suggested that stars overheat due to a shift in the parameters of nuclear processes occurring inside stars, which leads to the synthesis of heavy elements.
关 键 词:Stellar Nucleogenesis Solar Abundance Ensemble-Averaged Stellar Reactor Stellar Abundance Interstellar Mission HABITABILITY DNA-Star
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49