Unruh Metric Tensor HUP via Planckian Space-Time Compared to HUP Based Complexity of Measured System Results to Obtain Inflaton Potential Magnitude  

Unruh Metric Tensor HUP via Planckian Space-Time Compared to HUP Based Complexity of Measured System Results to Obtain Inflaton Potential Magnitude

在线阅读下载全文

作  者:Andrew Walcott Beckwith Andrew Walcott Beckwith(Physics Department, Chongqing University, Chongqing, China)

机构地区:[1]Physics Department, Chongqing University, Chongqing, China

出  处:《Journal of High Energy Physics, Gravitation and Cosmology》2024年第4期1628-1642,共15页高能物理(英文)

摘  要:First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, δgθθand δgϕϕare negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time δtis from the Heisenberg Uncertainty principle (HUP) applied to δgttin such a way as to be compared with ΔxΔp≥ℏ2+γ˜∂C∂Vwith V here a volume spatial term and γ˜a complexification strength term and ∂C∂Vinfluence of complexity of physical system being measured in order to obtain a parameterized value for the initial value of an inflaton which we call V0.First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, δgθθand δgϕϕare negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time δtis from the Heisenberg Uncertainty principle (HUP) applied to δgttin such a way as to be compared with ΔxΔp≥ℏ2+γ˜∂C∂Vwith V here a volume spatial term and γ˜a complexification strength term and ∂C∂Vinfluence of complexity of physical system being measured in order to obtain a parameterized value for the initial value of an inflaton which we call V0.

关 键 词:Massive Gravitons Heisenberg Uncertainty Principle (HUP) 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象