检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Andrew Walcott Beckwith Andrew Walcott Beckwith(Physics Department, Chongqing University, Chongqing, China)
机构地区:[1]Physics Department, Chongqing University, Chongqing, China
出 处:《Journal of High Energy Physics, Gravitation and Cosmology》2024年第4期1628-1642,共15页高能物理(英文)
摘 要:First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, δgθθand δgϕϕare negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time δtis from the Heisenberg Uncertainty principle (HUP) applied to δgttin such a way as to be compared with ΔxΔp≥ℏ2+γ˜∂C∂Vwith V here a volume spatial term and γ˜a complexification strength term and ∂C∂Vinfluence of complexity of physical system being measured in order to obtain a parameterized value for the initial value of an inflaton which we call V0.First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, δgθθand δgϕϕare negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time δtis from the Heisenberg Uncertainty principle (HUP) applied to δgttin such a way as to be compared with ΔxΔp≥ℏ2+γ˜∂C∂Vwith V here a volume spatial term and γ˜a complexification strength term and ∂C∂Vinfluence of complexity of physical system being measured in order to obtain a parameterized value for the initial value of an inflaton which we call V0.
关 键 词:Massive Gravitons Heisenberg Uncertainty Principle (HUP)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.238.74