Growing a Kerr Black Hole  

Growing a Kerr Black Hole

在线阅读下载全文

作  者:Leon F. Phillips 

机构地区:[1]University of Canterbury, Christchurch, New Zealand

出  处:《Journal of Modern Physics》2015年第13期1789-1792,共4页现代物理(英文)

摘  要:Growth of a black hole requires the participation of a near-by accretion disk if it is to occur at a significant rate. The Kerr solution of Einstein’s equation is a vacuum solution, but the center of a realistic Kerr black hole is not a vacuum, so the predicted disk singularity does not exist. Instead, the center of a black hole is occupied by an ultra-dense, spheroidal core whose diameter is greater than that of the theoretical disk singularity. The surface of a black hole’s core is continually bombarded by energetic particles from the external universe. Hence the cold remnant of a gravitationally-collapsed star that has often been assumed to be present at the center of a black hole must be replaced conceptually by a quark-gluon plasma whose temperature is of the order of 1012 K or more. The gravitational potential well of a black hole is extremely deep (TeV), but the number of discrete energy levels below the infinite-red-shift surface is finite. Information can be conveyed to observers in the external universe by thermally-excited fermions that escape from levels near the top of a black hole potential well.Growth of a black hole requires the participation of a near-by accretion disk if it is to occur at a significant rate. The Kerr solution of Einstein’s equation is a vacuum solution, but the center of a realistic Kerr black hole is not a vacuum, so the predicted disk singularity does not exist. Instead, the center of a black hole is occupied by an ultra-dense, spheroidal core whose diameter is greater than that of the theoretical disk singularity. The surface of a black hole’s core is continually bombarded by energetic particles from the external universe. Hence the cold remnant of a gravitationally-collapsed star that has often been assumed to be present at the center of a black hole must be replaced conceptually by a quark-gluon plasma whose temperature is of the order of 1012 K or more. The gravitational potential well of a black hole is extremely deep (TeV), but the number of discrete energy levels below the infinite-red-shift surface is finite. Information can be conveyed to observers in the external universe by thermally-excited fermions that escape from levels near the top of a black hole potential well.

关 键 词:KERR Black Hole No SINGULARITY Ultra-Dense Core Deep (Teravolts) Potential Well HIGH-ENERGY Incoming Particles QUARK-GLUON Plasma Information Flow through Event HORIZON 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象