检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute of Physical Chemistry,Polish Academy of Sciences Kasprzaka,Warsaw,Poland
出 处:《Journal of Modern Physics》2020年第3期475-485,共11页现代物理(英文)
摘 要:According to quantum mechanics, the commutation property of the energy Hamiltonian with the momentum operator should give the definite values not only for energy but also for the momentum quantum levels. A difficulty provided by the standing-like boundary conditions of the electron gas is that the Hamiltonian eigenfunctions are different than eigenfunctions of the momentum operator. In results the electron momenta are obtained from the correspondence rule between the classical and quantum mechanics given by Landau and Lifshits. As a consequence the statistics of solutions representing not only the energy values but also the electron momenta should be taken into account. In the Heisenberg picture of quantum mechanics, the momenta are easily obtained because the electron oscillators are there directly considered. In fact, the Hamiltonian entering the Heisenberg method can be defined in two different ways each giving the set of the electron energies known from the Schr?dinger’s approach.According to quantum mechanics, the commutation property of the energy Hamiltonian with the momentum operator should give the definite values not only for energy but also for the momentum quantum levels. A difficulty provided by the standing-like boundary conditions of the electron gas is that the Hamiltonian eigenfunctions are different than eigenfunctions of the momentum operator. In results the electron momenta are obtained from the correspondence rule between the classical and quantum mechanics given by Landau and Lifshits. As a consequence the statistics of solutions representing not only the energy values but also the electron momenta should be taken into account. In the Heisenberg picture of quantum mechanics, the momenta are easily obtained because the electron oscillators are there directly considered. In fact, the Hamiltonian entering the Heisenberg method can be defined in two different ways each giving the set of the electron energies known from the Schr?dinger’s approach.
关 键 词:Fundamentals of the Modern Quantum Theory Heisenberg Picture Its Momentum Results and the Energy Matrix Schrodinger Picture and Its Energy Results
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.80.77