The Bell Inequalities: Identifying What Is Testable and What Is Not  被引量:4

The Bell Inequalities: Identifying What Is Testable and What Is Not

在线阅读下载全文

作  者:Louis Sica[1] 

出  处:《Journal of Modern Physics》2020年第5期725-740,共16页现代物理(英文)

摘  要:The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two entangled particles neglecting non-commutation. The assumed correlation functions, later confirmed for certain quantum measurements, violate the Bell inequality. The present paper reviews a more general derivation of the Bell inequality showing that it is identically satisfied by finite data sets whether deterministic or random, after assuming merely that they exist. It is thereafter concerned with the consequences of this result for interpretations of the inequality that result in its violation. A primary finding is that correlation functions have differing forms due to quantum commutation, non-commutation, and conditions of measurement, and result in satisfaction of the Bell inequality used consistently with its derivation. A stochastic process having the same correlation function for all variable pairs is shown to be inconsistent with experimentally reported data. The logic of the three and four variable inequalities is shown to be similar. Finally the inequalities in probabilities are shown to follow from those in correlations with quantum mechanical results satisfying either when properly implemented.The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two entangled particles neglecting non-commutation. The assumed correlation functions, later confirmed for certain quantum measurements, violate the Bell inequality. The present paper reviews a more general derivation of the Bell inequality showing that it is identically satisfied by finite data sets whether deterministic or random, after assuming merely that they exist. It is thereafter concerned with the consequences of this result for interpretations of the inequality that result in its violation. A primary finding is that correlation functions have differing forms due to quantum commutation, non-commutation, and conditions of measurement, and result in satisfaction of the Bell inequality used consistently with its derivation. A stochastic process having the same correlation function for all variable pairs is shown to be inconsistent with experimentally reported data. The logic of the three and four variable inequalities is shown to be similar. Finally the inequalities in probabilities are shown to follow from those in correlations with quantum mechanical results satisfying either when properly implemented.

关 键 词:BELL Theorem BELL Inequality Entanglement LOCALITY Correlations Hidden Variables Non-Commutation COMMUTATION CROSS-CORRELATIONS Non-Stationary 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象