A Mathematical Comparison of the Schwarzschild and Kerr Metrics  被引量:2

A Mathematical Comparison of the Schwarzschild and Kerr Metrics

在线阅读下载全文

作  者:J.-F. Pommaret J.-F. Pommaret(CERMICS, Ecole des Ponts ParisTech, Paris, France)

机构地区:[1]CERMICS, Ecole des Ponts ParisTech, Paris, France

出  处:《Journal of Modern Physics》2020年第10期1672-1710,共39页现代物理(英文)

摘  要:A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well known for M, but also third order CC for S and K. In a recent paper (DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, without using specific technical tools such as Teukolski scalars or Killing-Yano tensors. However, even if S(<em>m</em>) and K(<em>m</em>, <em>a</em>) are depending on constant parameters in such a way that S <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span></span> M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span></span> 0 and K<span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span><span style="white-space:nowrap;"><span style="white-space:nowrap;"></span></span> S when <em>a</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span></span> 0, the CC of S do not provide the CC of M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span> 0 while the CC of K do not provide the CC of S when a <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span> 0. In this paper, using tricky motivating examples of operators with constant or variable parameters, we explain why the CC are depending on the choice of the parameters. In particular, the only purely intrinsic objects that can be defined, namely the extension modules, may change drastically. As the algebroid bracket is compatible with the <em>prolongation/projection</em> (PP) procedure,A few physicists have recently constructed the generating compatibility conditions (CC) of the Killing operator for the Minkowski (M), Schwarzschild (S) and Kerr (K) metrics. They discovered second order CC, well known for M, but also third order CC for S and K. In a recent paper (DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, without using specific technical tools such as Teukolski scalars or Killing-Yano tensors. However, even if S(<em>m</em>) and K(<em>m</em>, <em>a</em>) are depending on constant parameters in such a way that S <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span></span> M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span></span> 0 and K<span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span><span style="white-space:nowrap;"><span style="white-space:nowrap;"></span></span> S when <em>a</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span></span> 0, the CC of S do not provide the CC of M when <em>m</em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span> 0 while the CC of K do not provide the CC of S when a <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&rarr;</span></span></span> 0. In this paper, using tricky motivating examples of operators with constant or variable parameters, we explain why the CC are depending on the choice of the parameters. In particular, the only purely intrinsic objects that can be defined, namely the extension modules, may change drastically. As the algebroid bracket is compatible with the <em>prolongation/projection</em> (PP) procedure,

关 键 词:Formal Integrability Involutivity Compatibility Condition Janet Sequence Spencer Sequence Minkowski Metric Schwarzschild Metric Kerr Metric 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象