A Self-Linking Field Formalism  被引量:2

A Self-Linking Field Formalism

在线阅读下载全文

作  者:Edwin Eugene Klingman Edwin Eugene Klingman(Cybernetic Micro Systems, Inc., San Gregorio, CA, USA)

机构地区:[1]Cybernetic Micro Systems, Inc., San Gregorio, CA, USA

出  处:《Journal of Modern Physics》2021年第4期440-452,共13页现代物理(英文)

摘  要:The Gauss-linking integral for disjoint oriented smooth closed curves is derived linking integrals from the Biot-Savart description of the magnetic field. DeTurck and Gluck extend this linking from 3-space <em>R</em><sup>3</sup> to <em>SU</em> (2) space of the unit 3-sphere and hyperbolic space in Minkowski <em>R</em><sup>1,3</sup>. I herein extend Gauss-linking to self-linking and develop the concept of self-dual, which is then applied to gravitomagnetic dynamics. My purpose is to redefine Wheeler’s <em>geon</em> from unstable field structures based on the electromagnetic field to self-stabilized gravitomagnetic field structures.The Gauss-linking integral for disjoint oriented smooth closed curves is derived linking integrals from the Biot-Savart description of the magnetic field. DeTurck and Gluck extend this linking from 3-space <em>R</em><sup>3</sup> to <em>SU</em> (2) space of the unit 3-sphere and hyperbolic space in Minkowski <em>R</em><sup>1,3</sup>. I herein extend Gauss-linking to self-linking and develop the concept of self-dual, which is then applied to gravitomagnetic dynamics. My purpose is to redefine Wheeler’s <em>geon</em> from unstable field structures based on the electromagnetic field to self-stabilized gravitomagnetic field structures.

关 键 词:Gauss-Linking Self-Linking Biot-Savart Operator Green’s Function Laplacian Maxwell’s Eqns GRAVITOMAGNETISM SELF-DUAL Geons 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象