检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Edwin Eugene Klingman Edwin Eugene Klingman(Cybernetic Micro Systems, Inc., San Gregorio, CA, USA)
机构地区:[1]Cybernetic Micro Systems, Inc., San Gregorio, CA, USA
出 处:《Journal of Modern Physics》2021年第4期440-452,共13页现代物理(英文)
摘 要:The Gauss-linking integral for disjoint oriented smooth closed curves is derived linking integrals from the Biot-Savart description of the magnetic field. DeTurck and Gluck extend this linking from 3-space <em>R</em><sup>3</sup> to <em>SU</em> (2) space of the unit 3-sphere and hyperbolic space in Minkowski <em>R</em><sup>1,3</sup>. I herein extend Gauss-linking to self-linking and develop the concept of self-dual, which is then applied to gravitomagnetic dynamics. My purpose is to redefine Wheeler’s <em>geon</em> from unstable field structures based on the electromagnetic field to self-stabilized gravitomagnetic field structures.The Gauss-linking integral for disjoint oriented smooth closed curves is derived linking integrals from the Biot-Savart description of the magnetic field. DeTurck and Gluck extend this linking from 3-space <em>R</em><sup>3</sup> to <em>SU</em> (2) space of the unit 3-sphere and hyperbolic space in Minkowski <em>R</em><sup>1,3</sup>. I herein extend Gauss-linking to self-linking and develop the concept of self-dual, which is then applied to gravitomagnetic dynamics. My purpose is to redefine Wheeler’s <em>geon</em> from unstable field structures based on the electromagnetic field to self-stabilized gravitomagnetic field structures.
关 键 词:Gauss-Linking Self-Linking Biot-Savart Operator Green’s Function Laplacian Maxwell’s Eqns GRAVITOMAGNETISM SELF-DUAL Geons
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38