检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:A. Meessen A. Meessen(UCLouvain, Louvain-la-Neuve, Belgium)
机构地区:[1]UCLouvain, Louvain-la-Neuve, Belgium
出 处:《Journal of Modern Physics》2021年第11期1573-1605,共33页现代物理(英文)
摘 要:We justify and extend the standard model of elementary particle physics by generalizing the theory of relativity and quantum mechanics. The usual assumption that space and time are continuous implies, indeed, that it should be possible to measure arbitrarily small intervals of space and time, but we ignore if that is true or not. It is thus more realistic to consider an extremely small “quantum of length” of yet unknown value <em>a</em>. It is only required to be a universal constant for all inertial frames, like<em> c</em> and <em>h</em>. This yields a logically consistent theory and accounts for elementary particles by means of four new quantum numbers. They define “particle states” in terms of modulations of wave functions at the smallest possible scale in space-time. The resulting classification of elementary particles accounts also for dark matter. Antiparticles are redefined, without needing negative energy states and recently observed “anomalies” can be explained.We justify and extend the standard model of elementary particle physics by generalizing the theory of relativity and quantum mechanics. The usual assumption that space and time are continuous implies, indeed, that it should be possible to measure arbitrarily small intervals of space and time, but we ignore if that is true or not. It is thus more realistic to consider an extremely small “quantum of length” of yet unknown value <em>a</em>. It is only required to be a universal constant for all inertial frames, like<em> c</em> and <em>h</em>. This yields a logically consistent theory and accounts for elementary particles by means of four new quantum numbers. They define “particle states” in terms of modulations of wave functions at the smallest possible scale in space-time. The resulting classification of elementary particles accounts also for dark matter. Antiparticles are redefined, without needing negative energy states and recently observed “anomalies” can be explained.
关 键 词:Standard Model Elementary Particles Space-Time Quantization Dark Matter B Mesons DM Detection X 17 Ice Cube Muon Anomaly Do Decay Matter-Antimatter Asymmetry QUANTUM-GRAVITY Big Bang
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117