Nonlinear Conformal Electromagnetism  

Nonlinear Conformal Electromagnetism

在线阅读下载全文

作  者:J.-F. Pommaret J.-F. Pommaret(CERMICS, Ecole des Ponts ParisTech, France)

机构地区:[1]CERMICS, Ecole des Ponts ParisTech, France

出  处:《Journal of Modern Physics》2022年第4期442-494,共53页现代物理(英文)

摘  要:In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved.In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved.

关 键 词:Nonlinear Differential Sequences Linear Differential Sequences Lie Groupoids Lie Algebroids Conformal Group Spencer Cohomology Maxwell Equations Cosserat Equations 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象