Is the Growth of the Astronomical Unit Caused by the Allais Eclipse Effect?  

Is the Growth of the Astronomical Unit Caused by the Allais Eclipse Effect?

在线阅读下载全文

作  者:Russell Bagdoo Russell Bagdoo(Saint-Bruno-de-Montarville, Quebec, Canada)

机构地区:[1]Saint-Bruno-de-Montarville, Quebec, Canada

出  处:《Journal of Modern Physics》2023年第2期127-146,共20页现代物理(英文)

摘  要:In addition to the Pioneer anomaly and the Earth flyby anomaly for spacecraft, other unexplained anomalies disrupt the solar system dynamics, like the astronomical unit. We show in this paper that the Allais eclipse effect causes the major part of the growth of the length scale for the entire solar system. It is the rough disturbance on the barycenter Earth-Moon implying the Sun that was recorded in the movement of the paraconical pendulum. Earth and Moon revolve around their common center of gravity, which in turn orbits the Sun, and the perturbation of the eclipse hits this double, coupled Kepler’s movements. The thesis of the tidal friction supports that oceanic tidal friction transfers the angular momentum of the Earth to the Moon and slows down the rotation of the Earth while taking away the Moon. However, we think that there are not enough shallow seas to sanction this interpretation. The Earth-Moon tidal system might be inaccurate or unreliable in determining the Earth’s actual rotational spin-down rate. Our assertion is that the change in the Earth’s rotation is caused by a repulsive gravitational interaction during solar eclipse. The perturbation would submit to variations and distortions the region of the barycenter of the Earth-Moon system which revolves around the Sun, with the dual secular effects that the Moon spirals outwards and that the Earth-Moon system goes away from the Sun.In addition to the Pioneer anomaly and the Earth flyby anomaly for spacecraft, other unexplained anomalies disrupt the solar system dynamics, like the astronomical unit. We show in this paper that the Allais eclipse effect causes the major part of the growth of the length scale for the entire solar system. It is the rough disturbance on the barycenter Earth-Moon implying the Sun that was recorded in the movement of the paraconical pendulum. Earth and Moon revolve around their common center of gravity, which in turn orbits the Sun, and the perturbation of the eclipse hits this double, coupled Kepler’s movements. The thesis of the tidal friction supports that oceanic tidal friction transfers the angular momentum of the Earth to the Moon and slows down the rotation of the Earth while taking away the Moon. However, we think that there are not enough shallow seas to sanction this interpretation. The Earth-Moon tidal system might be inaccurate or unreliable in determining the Earth’s actual rotational spin-down rate. Our assertion is that the change in the Earth’s rotation is caused by a repulsive gravitational interaction during solar eclipse. The perturbation would submit to variations and distortions the region of the barycenter of the Earth-Moon system which revolves around the Sun, with the dual secular effects that the Moon spirals outwards and that the Earth-Moon system goes away from the Sun.

关 键 词:Solar Eclipse Allais Effect Eclipses Barycentre Repulsive Force of Gravity Overgravity and Antigravity Cosmologic Casimir Effect 

分 类 号:P73[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象