Nonlinear Conformal Gravitation  

Nonlinear Conformal Gravitation

在线阅读下载全文

作  者:J.-F. Pommaret J.-F. Pommaret(CERMICS, Ecole des Ponts ParisTech, Paris, France)

机构地区:[1]CERMICS, Ecole des Ponts ParisTech, Paris, France

出  处:《Journal of Modern Physics》2023年第11期1464-1496,共33页现代物理(英文)

摘  要:In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time.In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time.

关 键 词:Nonlinear Differential Sequences Linear Differential Sequences Lie Groupoids Lie Algebroids Conformal Geometry Spencer Cohomology Maxwell Equations Cosserat Equations 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象