Why the Central Monster in M87 Should Be a Massive DEO Rather than a SMBH?  

Why the Central Monster in M87 Should Be a Massive DEO Rather than a SMBH?

在线阅读下载全文

作  者:Ahmad A. Hujeirat Mauritz Wicker Ahmad A. Hujeirat;Mauritz Wicker(IWR, University of Heidelberg, Heidelberg, Germany)

机构地区:[1]IWR, University of Heidelberg, Heidelberg, Germany

出  处:《Journal of Modern Physics》2024年第5期537-549,共13页现代物理(英文)

摘  要:In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.

关 键 词:General Relativity Big Bang Black Holes QSOS Neutron Stars QCD Condensed Matter INCOMPRESSIBILITY SUPERFLUIDITY Super-Conductivity 

分 类 号:P14[天文地球—天体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象