The Essence of Gravity Is the Expansion Tendency of the Universe after the Big Bang  

The Essence of Gravity Is the Expansion Tendency of the Universe after the Big Bang

在线阅读下载全文

作  者:Weihong Qian Weihong Qian(School of Physics, Peking University, Beijing, China)

机构地区:[1]School of Physics, Peking University, Beijing, China

出  处:《Journal of Modern Physics》2024年第6期804-849,共46页现代物理(英文)

摘  要:Why cannot Newton’s theory of gravitation be used to describe the motion of micro particles? This article summarizes and clarifies that Newton’s theory of gravitation is subjectively a statistical description for natural phenomena, while its essence is the expansion tendency of particles in the new universe formed after the orthogonal collision (the Big Bang) of objects in the old universe. The new particles formed by the Big Bang exhibit the accelerating expansion and local convergence in the spacetime of the new universe. The force of the accelerating expansion for the new particles comes from the shear stress produced by the orthogonal collision. There is only a one-way conversion from the mass in the old universe to the energy in the new universe without any exchange of information between them. Orthogonal collision forms maximum energy density and accelerates motion of new particles. The theory that orthogonal collision produces a new universe can be used to explain the phenomena of three scales. On the cosmic scale, it can explain the Big Bang, the early celestial formation, and their movements. On the macro scale, it can explain the early Earth’s surface mountain uplift and current atmospheric vortices. At the micro scale, it can explain aurora and other astronomical optical phenomena as well as the generation of new particles. The idea of orthogonal collision attempts to use shear stress and particle potential energy to find a theory of everything that can fully explain all aspects of the universe.Why cannot Newton’s theory of gravitation be used to describe the motion of micro particles? This article summarizes and clarifies that Newton’s theory of gravitation is subjectively a statistical description for natural phenomena, while its essence is the expansion tendency of particles in the new universe formed after the orthogonal collision (the Big Bang) of objects in the old universe. The new particles formed by the Big Bang exhibit the accelerating expansion and local convergence in the spacetime of the new universe. The force of the accelerating expansion for the new particles comes from the shear stress produced by the orthogonal collision. There is only a one-way conversion from the mass in the old universe to the energy in the new universe without any exchange of information between them. Orthogonal collision forms maximum energy density and accelerates motion of new particles. The theory that orthogonal collision produces a new universe can be used to explain the phenomena of three scales. On the cosmic scale, it can explain the Big Bang, the early celestial formation, and their movements. On the macro scale, it can explain the early Earth’s surface mountain uplift and current atmospheric vortices. At the micro scale, it can explain aurora and other astronomical optical phenomena as well as the generation of new particles. The idea of orthogonal collision attempts to use shear stress and particle potential energy to find a theory of everything that can fully explain all aspects of the universe.

关 键 词:UNIVERSE SPACETIME GRAVITATION Orthogonal Collision Shear Stress Potential Energy 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象