Ashtekar-Kodama Gravity as a Classical and Quantum Extension of Loop Quantum Gravity  

Ashtekar-Kodama Gravity as a Classical and Quantum Extension of Loop Quantum Gravity

在线阅读下载全文

作  者:Jan Helm Jan Helm(Department of Electrical Engineering, Technical University of Berlin, Berlin, Germany)

机构地区:[1]Department of Electrical Engineering, Technical University of Berlin, Berlin, Germany

出  处:《Journal of Modern Physics》2024年第6期864-937,共74页现代物理(英文)

摘  要:This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables E<sub>mn</sub> (E-tensor, inverse densitized tetrad of the metric) and 16 variables A<sub>mn</sub> (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corrThis paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables E<sub>mn</sub> (E-tensor, inverse densitized tetrad of the metric) and 16 variables A<sub>mn</sub> (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corr

关 键 词:Quantum Gravity Loop Quantum Gravity General Relativity Gravitational Wave Gauge Field Theory Graviton Hamiltonian Constraint Gaussian Constraint Diffeomorphism Constraint 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象