Color Thresholding, Detection and Recognition of the Road Signs Using the Information Set Theory  

Color Thresholding, Detection and Recognition of the Road Signs Using the Information Set Theory

在线阅读下载全文

作  者:Farah Jamal Ansari Hanmandlu Madasu Farah Jamal Ansari;Hanmandlu Madasu(Department of Electrical Engineering, Indian Institute of Technology, Delhi, India)

机构地区:[1]Department of Electrical Engineering, Indian Institute of Technology, Delhi, India

出  处:《Journal of Modern Physics》2024年第11期1646-1678,共33页现代物理(英文)

摘  要:In this paper, approaches are presented for the thresholding, detection, tracking and recognition of the road signs as part of an Advanced Driver Assistance System (ADAS). In all these approaches, feature extraction is the backbone, whereas detection and recognition require the use of detectors and classifiers, respectively. In this, two issues are dominant: 1) Tackling the variability involved in the lighting conditions, sizes, and shapes of the road signs after segregating them from a world scene, and 2) Focusing on inaccurate fuzzy modeling arising due to the improper distribution of pixel intensities. The variability is overcome with the uncertainty representation using the information sets, an extension of fuzzy sets, whereas the incorrect fuzzy modeling is rectified using the pervasive information sets, an extension of intuitionistic fuzzy sets. The development of the intuitionistic fuzzy transform paralleling the fuzzy entropy function paves the way for the formulation of different hesitancy features by cashing in on the non-membership function. Next, promulgation of the Hanman law prescribes the fuzzy gradient/divergent values for different tasks. The notable landmarks of this work are the creation of a Color-Based Detector (CBD), derivation of the incremental hesitancy features accrued from the color histograms and the formulation of a variant of the Hanman Transform Classifier using Convolutional Neural Network (CNN) features. We have used the Belgium dataset to vindicate the efficacy of the proposed methods.In this paper, approaches are presented for the thresholding, detection, tracking and recognition of the road signs as part of an Advanced Driver Assistance System (ADAS). In all these approaches, feature extraction is the backbone, whereas detection and recognition require the use of detectors and classifiers, respectively. In this, two issues are dominant: 1) Tackling the variability involved in the lighting conditions, sizes, and shapes of the road signs after segregating them from a world scene, and 2) Focusing on inaccurate fuzzy modeling arising due to the improper distribution of pixel intensities. The variability is overcome with the uncertainty representation using the information sets, an extension of fuzzy sets, whereas the incorrect fuzzy modeling is rectified using the pervasive information sets, an extension of intuitionistic fuzzy sets. The development of the intuitionistic fuzzy transform paralleling the fuzzy entropy function paves the way for the formulation of different hesitancy features by cashing in on the non-membership function. Next, promulgation of the Hanman law prescribes the fuzzy gradient/divergent values for different tasks. The notable landmarks of this work are the creation of a Color-Based Detector (CBD), derivation of the incremental hesitancy features accrued from the color histograms and the formulation of a variant of the Hanman Transform Classifier using Convolutional Neural Network (CNN) features. We have used the Belgium dataset to vindicate the efficacy of the proposed methods.

关 键 词:Detection RECOGNITION Feature Extraction Hesitancy Feature 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象