Thermodynamic Energy-Laws Presuppose Time Orientation Subject to Principle of Least Action  

Thermodynamic Energy-Laws Presuppose Time Orientation Subject to Principle of Least Action

在线阅读下载全文

作  者:Helmut Tributsch Helmut Tributsch(Institute for Physical and Theoretical Chemistry, Free University, Berlin, Germany;Helmholtz Centre Berlin for Materials and Energy, Berlin, Germany)

机构地区:[1]Institute for Physical and Theoretical Chemistry, Free University, Berlin, Germany [2]Helmholtz Centre Berlin for Materials and Energy, Berlin, Germany

出  处:《Journal of Modern Physics》2025年第2期310-327,共18页现代物理(英文)

摘  要:It is shown that time asymmetry is essential for deriving thermodynamic law and arises from the turnover of energy while reducing its information content and driving entropy increase. A dynamically interpreted principle of least action enables time asymmetry and time flow as a generation of action and redefines useful energy as an information system which implements a form of acting information. This is demonstrated using a basic formula, originally applied for time symmetry/energy conservation considerations, relating time asymmetry (which is conventionally denied but here expressly allowed), to energy behaviour. The results derived then explained that a dynamic energy is driving time asymmetry. It is doing it by decreasing the information content of useful energy, thus generating action and entropy increase, explaining action-time as an information phenomenon. Thermodynamic laws follow directly. The formalism derived readily explains what energy is, why it is conserved (1st law of thermodynamics), why entropy increases (2nd law) and that maximum entropy production within the restraints of the system controls self-organized processes of non-linear irreversible thermodynamics. The general significance of the principle of least action arises from its role of controlling the action generating oriented time of nature. These results contrast with present understanding of time neutrality and clock-time, which are here considered a source of paradoxes, intellectual contradictions and dead-end roads in models explaining nature and the universe.It is shown that time asymmetry is essential for deriving thermodynamic law and arises from the turnover of energy while reducing its information content and driving entropy increase. A dynamically interpreted principle of least action enables time asymmetry and time flow as a generation of action and redefines useful energy as an information system which implements a form of acting information. This is demonstrated using a basic formula, originally applied for time symmetry/energy conservation considerations, relating time asymmetry (which is conventionally denied but here expressly allowed), to energy behaviour. The results derived then explained that a dynamic energy is driving time asymmetry. It is doing it by decreasing the information content of useful energy, thus generating action and entropy increase, explaining action-time as an information phenomenon. Thermodynamic laws follow directly. The formalism derived readily explains what energy is, why it is conserved (1st law of thermodynamics), why entropy increases (2nd law) and that maximum entropy production within the restraints of the system controls self-organized processes of non-linear irreversible thermodynamics. The general significance of the principle of least action arises from its role of controlling the action generating oriented time of nature. These results contrast with present understanding of time neutrality and clock-time, which are here considered a source of paradoxes, intellectual contradictions and dead-end roads in models explaining nature and the universe.

关 键 词:Thermodynamic Laws Newton’s Time Nature’s Time Entropy Increase IRREVERSIBILITY SELF-ORGANIZATION Least Action 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象