检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiying Ma Haimiao Ren Jiying Ma;Haimiao Ren(College of Science, University of Shanghai for Science and Technology, Shanghai, China;Department of Mathematics, University of Shanghai for Science and Technology, Shanghai, China)
机构地区:[1]College of Science, University of Shanghai for Science and Technology, Shanghai, China [2]Department of Mathematics, University of Shanghai for Science and Technology, Shanghai, China
出 处:《Open Journal of Applied Sciences》2021年第4期440-457,共18页应用科学(英文)
摘 要:In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold <img alt="" src="Edit_0a62b9be-7934-457b-aca3-af3420f5b5ee.png" /> for the infected prey population, that is, the disease will tend to extinction if <img alt="" src="Edit_e6cd63f6-de07-42be-a22a-8750d6c8aac9.png" />< 1, and it will exist in the long time if <img alt="" src="Edit_5964fdd8-a9fe-4dc2-b897-f4206f046f65.png" />> 1. Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold <img alt="" src="Edit_0a62b9be-7934-457b-aca3-af3420f5b5ee.png" /> for the infected prey population, that is, the disease will tend to extinction if <img alt="" src="Edit_e6cd63f6-de07-42be-a22a-8750d6c8aac9.png" />< 1, and it will exist in the long time if <img alt="" src="Edit_5964fdd8-a9fe-4dc2-b897-f4206f046f65.png" />> 1. Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.
关 键 词:Stochastic Predator-Prey Model RATIO-DEPENDENT Stationary Distribution EXTINCTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70