Algebra and Coalgebra on Posets  

Algebra and Coalgebra on Posets

在线阅读下载全文

作  者:Rongrong Yuan Huilan Li Rongrong Yuan;Huilan Li(School of Mathematics and Statistics, Shandong Normal University, Jinan, China)

机构地区:[1]School of Mathematics and Statistics, Shandong Normal University, Jinan, China

出  处:《Open Journal of Applied Sciences》2022年第7期1232-1242,共11页应用科学(英文)

摘  要:A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. Firstly, by associativity and the unitary property, we prove that the vector space with the conjunction product is a graded algebra. Then by the definition of free algebra, we prove that the algebra is free. Finally, by the coassociativity and the counitary property, we prove that the vector space with the unshuffle coproduct is a graded coalgebra.A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. Firstly, by associativity and the unitary property, we prove that the vector space with the conjunction product is a graded algebra. Then by the definition of free algebra, we prove that the algebra is free. Finally, by the coassociativity and the counitary property, we prove that the vector space with the unshuffle coproduct is a graded coalgebra.

关 键 词:Conjunction Product Unshuffle Coproduct POSET Graded Free 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象