检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Stephen Ojo Taiwo P. Ojo Victor Ojong Etta Stephen Ojo;Taiwo P. Ojo;Victor Ojong Etta(College of Engineering, Anderson University, Anderson, USA;Department of Management Information Systems, Girne American University, Girne, Northern Cyprus;Computer Science Department, Florida A & M University, Tallahassee, USA)
机构地区:[1]College of Engineering, Anderson University, Anderson, USA [2]Department of Management Information Systems, Girne American University, Girne, Northern Cyprus [3]Computer Science Department, Florida A & M University, Tallahassee, USA
出 处:《Open Journal of Applied Sciences》2022年第7期1271-1283,共13页应用科学(英文)
摘 要:Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems relating to path loss predictions, this article presents an optimal path loss propagation model developed at 3.4 GHz with the use of fuzzy logic. We introduced Fuzzy logic to accurately represent all forms of uncertainties in the data spectrum as the signal propagates from the transceiver to the receiver, thereby producing accurate results. Experimental data were collected across Cyprus at 3.4 GHz and compared with three existing path loss models. The fuzzy-logic path loss prediction model was then developed and compared with the experimental data and with each of the theoretical empirical models, the newly developed model predicted signal loss with the greatest accuracy as it gives the lowest root-mean-square error. The newly developed model is very efficient for signal propagation and path loss prediction.Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems relating to path loss predictions, this article presents an optimal path loss propagation model developed at 3.4 GHz with the use of fuzzy logic. We introduced Fuzzy logic to accurately represent all forms of uncertainties in the data spectrum as the signal propagates from the transceiver to the receiver, thereby producing accurate results. Experimental data were collected across Cyprus at 3.4 GHz and compared with three existing path loss models. The fuzzy-logic path loss prediction model was then developed and compared with the experimental data and with each of the theoretical empirical models, the newly developed model predicted signal loss with the greatest accuracy as it gives the lowest root-mean-square error. The newly developed model is very efficient for signal propagation and path loss prediction.
关 键 词:Signal Loss FUZZY-LOGIC Machine Learning Signal Propagation ACCURACY Empirical DETERMINISTIC
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62