Applications of Non-Classical Equations and Their Approaches to the Solution of Some of Classes Equations Arise in the Kelvin-Helmholtz Mechanism and Instability  

Applications of Non-Classical Equations and Their Approaches to the Solution of Some of Classes Equations Arise in the Kelvin-Helmholtz Mechanism and Instability

在线阅读下载全文

作  者:Mahammad A. Nurmammadov Mahammad A. Nurmammadov(Shamakhi Astropysical Observatory Named after Nasreddin Tusi of Ministry of Sciences and Education of the Republic Azerbaijan, Shamakhi, Azerbaijan)

机构地区:[1]Shamakhi Astropysical Observatory Named after Nasreddin Tusi of Ministry of Sciences and Education of the Republic Azerbaijan, Shamakhi, Azerbaijan

出  处:《Open Journal of Applied Sciences》2022年第11期1873-1891,共19页应用科学(英文)

摘  要:In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and insIn the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and ins

关 键 词:Kelvin-Helmholtz Mechanism and Instability Ordinary Differential Equations Weighted Space Degenerating Planetary Jupiter Non-Classical Approaches 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象