Fusion: It’s Time to Color outside the Lines  

Fusion: It’s Time to Color outside the Lines

在线阅读下载全文

作  者:Wallace Manheimer Wallace Manheimer(US Naval Research Laboratory (Retired), Washington DC, USA)

机构地区:[1]US Naval Research Laboratory (Retired), Washington DC, USA

出  处:《Open Journal of Applied Sciences》2024年第3期740-800,共61页应用科学(英文)

摘  要:There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeeded on several of its shots where ~1.5 - 2 megajoules from its laser (National Ignition Facility, or NIF) has generated ~1.3 - 3 megajoules of fusion products. The highest ratio of fusion energy to laser energy it achieved, defined as its Q, was 1.5 at the time of this writing. While LLNL is sponsored by nuclear stockpile stewardship, this author sees a likely path from their result to fusion for energy for the world, a path using a very different laser and a very different target configuration. The bad news is that the International Tokamak Experimental Reactor (ITER) has continued to stumble on more and more delays and cost overruns, as its capital cost has mushroomed from ~$5 billion to ~ $25 B. This paper argues that the American fusion effort, for energy for the civilian economy, should switch its emphasis not only from magnetic fusion to inertial fusion but should also take much more seriously fusion breeding. Over the next few decades, the world might well be setting up more and more thermal nuclear reactors, and these might need fuel which only fusion breeders can supply. In other words, fusion should begin to color outside the lines.There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeeded on several of its shots where ~1.5 - 2 megajoules from its laser (National Ignition Facility, or NIF) has generated ~1.3 - 3 megajoules of fusion products. The highest ratio of fusion energy to laser energy it achieved, defined as its Q, was 1.5 at the time of this writing. While LLNL is sponsored by nuclear stockpile stewardship, this author sees a likely path from their result to fusion for energy for the world, a path using a very different laser and a very different target configuration. The bad news is that the International Tokamak Experimental Reactor (ITER) has continued to stumble on more and more delays and cost overruns, as its capital cost has mushroomed from ~$5 billion to ~ $25 B. This paper argues that the American fusion effort, for energy for the civilian economy, should switch its emphasis not only from magnetic fusion to inertial fusion but should also take much more seriously fusion breeding. Over the next few decades, the world might well be setting up more and more thermal nuclear reactors, and these might need fuel which only fusion breeders can supply. In other words, fusion should begin to color outside the lines.

关 键 词:Fusion Breeding Direct Drive Laser Fusion ArF Laser Fusion KrF Laser Fusion TOKAMAKS STELLARATORS 

分 类 号:TL6[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象