机构地区:[1]Laboratoire de Physique des Plasmas et de Recherches Interdisciplinaires, Departement de Physique, Universite Cheikh Anta Diop, Dakar, Senegal [2]Instituto de Ciencias Nucleares, Universidad Nacional Autnoma de Mxico, Circuito Exterior s/n, Ciudad Universitaria, Coyocan, Ciudad de Mxico, Mexico
出 处:《Open Journal of Applied Sciences》2024年第12期3649-3667,共19页应用科学(英文)
摘 要:The generalized oscillator strengths (GOSs) of 2p63s0 (3p, 4p, 5p, 6p) states excited from sodium ground state in Debye plasma, are studied by two kinds of theoretical approaches: the restricted Hartree-Fock (RHF) method and the random phase approximation with exchange (RPAE). Wavefunctions of the ground state and the excited states are calculated numerically from the RHF equation, employing the local density approach for exchange interaction including, in extension, plasma screening effects. The GOSs have been computed by using these wavefunctions. The results of RHF and RPAE calculations of the GOS for different Debye lengths have been reported for sodium dipole excitation to 3s0 (3p, 4p, 5p, 6p). We show, in this study, that RPAE results for values of Debye length D = 30, 100, ∞ are in excellent agreement with those found by other authors. The results of RPAE calculations show that correlation effects are quite significant around the maxima GOS for the excitations to 3s0 (4p, 5p, 6p) but are found to have no great influence in the GOS for the dipole excitation to 3s03p. We find that the amplitude of the GOS has noticeably been reduced in going from higher to lower Debye length. We’ve observed here that the peak of the GOS shifts towards a small momentum transfer when the value D = 20 a.u is taken. These results show an important influence of the Debye plasma screening interactions on the GOS as the screening Debye length is decreased.The generalized oscillator strengths (GOSs) of 2p63s0 (3p, 4p, 5p, 6p) states excited from sodium ground state in Debye plasma, are studied by two kinds of theoretical approaches: the restricted Hartree-Fock (RHF) method and the random phase approximation with exchange (RPAE). Wavefunctions of the ground state and the excited states are calculated numerically from the RHF equation, employing the local density approach for exchange interaction including, in extension, plasma screening effects. The GOSs have been computed by using these wavefunctions. The results of RHF and RPAE calculations of the GOS for different Debye lengths have been reported for sodium dipole excitation to 3s0 (3p, 4p, 5p, 6p). We show, in this study, that RPAE results for values of Debye length D = 30, 100, ∞ are in excellent agreement with those found by other authors. The results of RPAE calculations show that correlation effects are quite significant around the maxima GOS for the excitations to 3s0 (4p, 5p, 6p) but are found to have no great influence in the GOS for the dipole excitation to 3s03p. We find that the amplitude of the GOS has noticeably been reduced in going from higher to lower Debye length. We’ve observed here that the peak of the GOS shifts towards a small momentum transfer when the value D = 20 a.u is taken. These results show an important influence of the Debye plasma screening interactions on the GOS as the screening Debye length is decreased.
关 键 词:Generalized Oscillator Strength Length Form Restricted Hatree-Fock Random Phase Approximation with Exchange Debye-Hückel Plasma Screening Effect
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...