检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Augusto Kielbowicz Diego Fernández Adriana Saal Claudio El Hasi Carlos Vigh Augusto Kielbowicz;Diego Fernández;Adriana Saal;Claudio El Hasi;Carlos Vigh(Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina;Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Argentina de la Empresa, Buenos Aires, Argentina;Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina;Instituto de Física Interdisciplinaria Aplicada (CONICET-UBA), Buenos Aires, Argentina)
机构地区:[1]Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina [2]Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Argentina de la Empresa, Buenos Aires, Argentina [3]Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina [4]Instituto de Física Interdisciplinaria Aplicada (CONICET-UBA), Buenos Aires, Argentina
出 处:《Open Journal of Fluid Dynamics》2023年第1期32-46,共15页流体动力学(英文)
摘 要:The Advection-Diffusion Reaction (ADR) equation appears in many problems in nature. This constitutes a general model that is useful in various scenarios, from porous media to atmospheric processes. Particularly, it is used at the interface between two fluids where different types of instabilities due to surface mobility may appear. Together with the ADR equation, the Darcy-Brinkman model describes the phenomena known as fingering that appear in different contexts. The study of this type of system gains in complexity when the number of chemical species dissolved in both fluids increases. With more solutes, the increasing complexity of this phenomenon generally requires much computational power. To face the need for more computational resources, we build a solver tool based on an Alternating Direction Implicit (ADI) scheme that can be run in Central Processing Unit (CPU) and Graphic Processing Unit (GPU) architectures on any notebook. The implementation is done using the MATLAB platform to compare both versions. It is shown that using the GPU version strongly saves both resources and calculation times.The Advection-Diffusion Reaction (ADR) equation appears in many problems in nature. This constitutes a general model that is useful in various scenarios, from porous media to atmospheric processes. Particularly, it is used at the interface between two fluids where different types of instabilities due to surface mobility may appear. Together with the ADR equation, the Darcy-Brinkman model describes the phenomena known as fingering that appear in different contexts. The study of this type of system gains in complexity when the number of chemical species dissolved in both fluids increases. With more solutes, the increasing complexity of this phenomenon generally requires much computational power. To face the need for more computational resources, we build a solver tool based on an Alternating Direction Implicit (ADI) scheme that can be run in Central Processing Unit (CPU) and Graphic Processing Unit (GPU) architectures on any notebook. The implementation is done using the MATLAB platform to compare both versions. It is shown that using the GPU version strongly saves both resources and calculation times.
关 键 词:FINGERING FLUIDS Simulations Numerical Solver Hele-Shaw Cell
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.148