Linear System Solutions of the Navier-Stokes Equations with Application to Flow over a Backward-Facing Step  

Linear System Solutions of the Navier-Stokes Equations with Application to Flow over a Backward-Facing Step

在线阅读下载全文

作  者:Achraf Badahmane Achraf Badahmane(LMPA, Université du Littoral Cõ,te d’Opale, Calais Cedex, France)

机构地区:[1]LMPA, Université du Littoral Cõ,te d’Opale, Calais Cedex, France

出  处:《Open Journal of Fluid Dynamics》2023年第3期133-143,共11页流体动力学(英文)

摘  要:Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps.Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps.

关 键 词:Navier-Stokes Equation ΡGMRES Direct Solver Schur Approach PRECONDITIONER 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象