Cluster-Cluster Potentials for the Carbon Nucleus  

Cluster-Cluster Potentials for the Carbon Nucleus

在线阅读下载全文

作  者:K. A. Kharroube K. A. Kharroube(Faculty of Science, Lebanese University, Beirut, Lebanon)

机构地区:[1]Faculty of Science, Lebanese University, Beirut, Lebanon

出  处:《Open Journal of Microphysics》2020年第4期35-45,共11页微观物理学期刊(英文)

摘  要:Two types of potentials are given in the present paper. The two potentials have Gaussian radial dependences. Such shapes of radial functions are suitable for using in the unitary scheme model. The first potential is given in the form of an attractive force and the second is given in the form of a superposition of repulsive and attractive forces. The two potentials are used to calculate the binding energy of the carbon nucleus <sup>12</sup>C. For this purpose, we expand the ground-state wave function of carbon in a series of the bases of the unitary scheme model and apply the variational method. To calculate the necessary matrix elements required to obtain the binding energy of carbon, we factorized the unitary scheme model bases in the form of products of two wave functions: the first function represents the set of the A-4 nucleons and the second function represents the set of the last four nucleons by using the well-known four-body fractional parentage coefficients. Good results are obtained for the binding energy of <sup>12</sup>C by using the two potentials.Two types of potentials are given in the present paper. The two potentials have Gaussian radial dependences. Such shapes of radial functions are suitable for using in the unitary scheme model. The first potential is given in the form of an attractive force and the second is given in the form of a superposition of repulsive and attractive forces. The two potentials are used to calculate the binding energy of the carbon nucleus <sup>12</sup>C. For this purpose, we expand the ground-state wave function of carbon in a series of the bases of the unitary scheme model and apply the variational method. To calculate the necessary matrix elements required to obtain the binding energy of carbon, we factorized the unitary scheme model bases in the form of products of two wave functions: the first function represents the set of the A-4 nucleons and the second function represents the set of the last four nucleons by using the well-known four-body fractional parentage coefficients. Good results are obtained for the binding energy of <sup>12</sup>C by using the two potentials.

关 键 词:Unitary Scheme Model Four-Particle Fractional Parentage Coefficients Clus-ter-Cluster Potentials Carbon Nucleus 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象