检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Peter A. Hall Gabor Kiss Tilman Kuhn Salissou Moutari Ellen Patterson Emily Smith Peter A. Hall;Gabor Kiss;Tilman Kuhn;Salissou Moutari;Ellen Patterson;Emily Smith(Mathematical Science Research Centre, School of Mathematics & Physics, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom;School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom;Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany)
机构地区:[1]Mathematical Science Research Centre, School of Mathematics & Physics, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom [2]School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom [3]Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany
出 处:《Open Journal of Modelling and Simulation》2021年第2期91-110,共20页建模与仿真(英文)
摘 要:In this study, we investigate the dynamics of the COVID-19 epidemic in Northern Ireland from 1<sup>st</sup> March 2020 up to 25<sup>th</sup> December 2020, using sever</span><span><span style="font-family:Verdana;">al copies of a Susceptible-Exposed-Infectious-Recovered (<i></span><i><span style="font-family:Verdana;">SEIR</span></i><span style="font-family:Verdana;"></i>) compart</span></span><span style="font-family:Verdana;">mental model, and compare it to </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">detailed publicly available dataset. We split the data into 10 time intervals and fit the models on the consecutive intervals to the cumulative number of confirmed positive cases on each interval. Using the fitted parameter estimates, we also provide estimates of the reproduction number.</span><span style="font-family:Verdana;"> We also discuss the limitations and possible extensions of the employed model.In this study, we investigate the dynamics of the COVID-19 epidemic in Northern Ireland from 1<sup>st</sup> March 2020 up to 25<sup>th</sup> December 2020, using sever</span><span><span style="font-family:Verdana;">al copies of a Susceptible-Exposed-Infectious-Recovered (<i></span><i><span style="font-family:Verdana;">SEIR</span></i><span style="font-family:Verdana;"></i>) compart</span></span><span style="font-family:Verdana;">mental model, and compare it to </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">detailed publicly available dataset. We split the data into 10 time intervals and fit the models on the consecutive intervals to the cumulative number of confirmed positive cases on each interval. Using the fitted parameter estimates, we also provide estimates of the reproduction number.</span><span style="font-family:Verdana;"> We also discuss the limitations and possible extensions of the employed model.
关 键 词:PANDEMIC EPIDEMIC SARS-CoV-2 COVID-19 Compartmental Model SEIR Model Basic Reproduction Number Effective Reproduction Number Parameter Estimates Fitted Model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28