Dynamical Behaviors of a Modified Leslie-Gower Predator-Prey System with Fear Effect and Prey Refuge  

Dynamical Behaviors of a Modified Leslie-Gower Predator-Prey System with Fear Effect and Prey Refuge

在线阅读下载全文

作  者:Ke Yuan Ke Yuan(School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian, China)

机构地区:[1]School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian, China

出  处:《Open Journal of Modelling and Simulation》2024年第4期184-202,共19页建模与仿真(英文)

摘  要:In this paper, the dynamical behaviors of a modified Leslie-Gower predator-prey model incorporating fear effect and prey refuge are investigated. We delve into the construction of the model and its biological significance, with preliminary results encompassing positivity, boundedness, and persistence. The stability of the system’s boundary and positive equilibrium points is proven by calculating the real part of the eigenvalues of the Jacobian matrix. At the positive equilibrium point, we demonstrate that the system’s unique positive equilibrium is globally asymptotically stable by using the Dulac criterion. Furthermore, at this equilibrium point, we employ the Implicit Function Theorem to discuss how fear effects and prey refuges influence the population densities of both prey and predators. Finally, numerical simulations are conducted to validate the above-mentioned conclusions and explored the impact of Predator-taxis sensitivity αon dynamics of the system.In this paper, the dynamical behaviors of a modified Leslie-Gower predator-prey model incorporating fear effect and prey refuge are investigated. We delve into the construction of the model and its biological significance, with preliminary results encompassing positivity, boundedness, and persistence. The stability of the system’s boundary and positive equilibrium points is proven by calculating the real part of the eigenvalues of the Jacobian matrix. At the positive equilibrium point, we demonstrate that the system’s unique positive equilibrium is globally asymptotically stable by using the Dulac criterion. Furthermore, at this equilibrium point, we employ the Implicit Function Theorem to discuss how fear effects and prey refuges influence the population densities of both prey and predators. Finally, numerical simulations are conducted to validate the above-mentioned conclusions and explored the impact of Predator-taxis sensitivity αon dynamics of the system.

关 键 词:Fear Effect Prey Refuge Predator-Taxis Sensitivity Population Density Stability 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象