检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Arjun Banerjee
机构地区:[1]Computer Science Department, Purdue University, West Lafayette, IN, USA
出 处:《Open Journal of Statistics》2018年第1期49-68,共20页统计学期刊(英文)
摘 要:In this paper I present a novel polynomial regression method called Finite Difference Regression for a uniformly sampled sequence of noisy data points that determines the order of the best fitting polynomial and provides estimates of its coefficients. Unlike classical least-squares polynomial regression methods in the case where the order of the best fitting polynomial is unknown and must be determined from the R2 value of the fit, I show how the t-test from statistics can be combined with the method of finite differences to yield a more sensitive and objective measure of the order of the best fitting polynomial. Furthermore, it is shown how these finite differences used in the determination of the order, can be reemployed to produce excellent estimates of the coefficients of the best fitting polynomial. I show that not only are these coefficients unbiased and consistent, but also that the asymptotic properties of the fit get better with increasing degrees of the fitting polynomial.In this paper I present a novel polynomial regression method called Finite Difference Regression for a uniformly sampled sequence of noisy data points that determines the order of the best fitting polynomial and provides estimates of its coefficients. Unlike classical least-squares polynomial regression methods in the case where the order of the best fitting polynomial is unknown and must be determined from the R2 value of the fit, I show how the t-test from statistics can be combined with the method of finite differences to yield a more sensitive and objective measure of the order of the best fitting polynomial. Furthermore, it is shown how these finite differences used in the determination of the order, can be reemployed to produce excellent estimates of the coefficients of the best fitting polynomial. I show that not only are these coefficients unbiased and consistent, but also that the asymptotic properties of the fit get better with increasing degrees of the fitting polynomial.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28