Maximum Entropy Empirical Likelihood Methods Based on Bivariate Laplace Transforms and Moment Generating Functions  

Maximum Entropy Empirical Likelihood Methods Based on Bivariate Laplace Transforms and Moment Generating Functions

在线阅读下载全文

作  者:Andrew Luong 

机构地区:[1]école d’Actuariat, Université Laval, Québec, Canada

出  处:《Open Journal of Statistics》2018年第2期264-283,共20页统计学期刊(英文)

摘  要:Maximum Entropy Empirical Likelihood (MEEL) methods are extended to bivariate distributions with closed form expressions for their bivariate Laplace transforms (BLT) or moment generating functions (BMGF) without closed form expressions for their bivariate density functions which make the implementation of the likelihood methods difficult. These distributions are often encountered in joint modeling in actuarial science and finance. Moment conditions to implement MEEL methods are given and a bivariate Laplace transform power mixture (BLTPM) is also introduced, the new operator generalizes the existing univariate one in the literature. Many new bivariate distributions including infinitely divisible(ID) distributions with closed form expressions for their BLT can be created using this operator and MEEL methods can also be applied to these bivariate distributions.Maximum Entropy Empirical Likelihood (MEEL) methods are extended to bivariate distributions with closed form expressions for their bivariate Laplace transforms (BLT) or moment generating functions (BMGF) without closed form expressions for their bivariate density functions which make the implementation of the likelihood methods difficult. These distributions are often encountered in joint modeling in actuarial science and finance. Moment conditions to implement MEEL methods are given and a bivariate Laplace transform power mixture (BLTPM) is also introduced, the new operator generalizes the existing univariate one in the literature. Many new bivariate distributions including infinitely divisible(ID) distributions with closed form expressions for their BLT can be created using this operator and MEEL methods can also be applied to these bivariate distributions.

关 键 词:BIVARIATE Power Mixture Operator Laplace Transform COPULAS CHI-SQUARE Test Statistics BIVARIATE NORMALITY Infinite DIVISIBILITY Empirical Likelihood 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象