Asymptotic Normality Distribution of Simulated Minimum Hellinger Distance Estimators for Continuous Models  被引量:1

Asymptotic Normality Distribution of Simulated Minimum Hellinger Distance Estimators for Continuous Models

在线阅读下载全文

作  者:Andrew Luong Claire Bilodeau 

机构地区:[1]école d’actuariat, Université Laval, Québec, Canada

出  处:《Open Journal of Statistics》2018年第5期846-860,共15页统计学期刊(英文)

摘  要:Certain distributions do not have a closed-form density, but it is simple to draw samples from them. For such distributions, simulated minimum Hellinger distance (SMHD) estimation appears to be useful. Since the method is distance-based, it happens to be naturally robust. This paper is a follow-up to a previous paper where the SMHD estimators were only shown to be consistent;this paper establishes their asymptotic normality. For any parametric family of distributions for which all positive integer moments exist, asymptotic properties for the SMHD method indicate that the variance of the SMHD estimators attains the lower bound for simulation-based estimators, which is based on the inverse of the Fisher information matrix, adjusted by a constant that reflects the loss of efficiency due to simulations. All these features suggest that the SMHD method is applicable in many fields such as finance or actuarial science where we often encounter distributions without closed-form density.Certain distributions do not have a closed-form density, but it is simple to draw samples from them. For such distributions, simulated minimum Hellinger distance (SMHD) estimation appears to be useful. Since the method is distance-based, it happens to be naturally robust. This paper is a follow-up to a previous paper where the SMHD estimators were only shown to be consistent;this paper establishes their asymptotic normality. For any parametric family of distributions for which all positive integer moments exist, asymptotic properties for the SMHD method indicate that the variance of the SMHD estimators attains the lower bound for simulation-based estimators, which is based on the inverse of the Fisher information matrix, adjusted by a constant that reflects the loss of efficiency due to simulations. All these features suggest that the SMHD method is applicable in many fields such as finance or actuarial science where we often encounter distributions without closed-form density.

关 键 词:Continuous DISTRIBUTION KERNEL Density ESTIMATE CONTINUITY in PROBABILITY DIFFERENTIABILITY in PROBABILITY Hellinger Distance 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象