检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qi Yang Yishu Wang
机构地区:[1]Qingdao University, Qingdao, Shandong, China
出 处:《Open Journal of Statistics》2019年第5期543-554,共12页统计学期刊(英文)
摘 要:This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier detection method was used to detect the location of outliers, which were processed by the iterative method. Secondly, in order to describe the peak and fat tail of the financial time series, as well as the leverage effect, this work used the skewed-t Asymmetric Power Autoregressive Conditional Heteroskedasticity model based on the Autoregressive Integrated Moving Average Model to analyze the sales data. Empirical analysis showed that the model considering the skewed distribution is effective.This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier detection method was used to detect the location of outliers, which were processed by the iterative method. Secondly, in order to describe the peak and fat tail of the financial time series, as well as the leverage effect, this work used the skewed-t Asymmetric Power Autoregressive Conditional Heteroskedasticity model based on the Autoregressive Integrated Moving Average Model to analyze the sales data. Empirical analysis showed that the model considering the skewed distribution is effective.
关 键 词:Forecasting OUTLIERS IMPROVED GARCH MODEL Partial T-APARCH MODEL Based on ARIMA MODEL
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28