机构地区:[1]Department of Mathematics, Nasarawa State University, Keffi, Nigeria
出 处:《Open Journal of Statistics》2021年第5期886-905,共20页统计学期刊(英文)
摘 要:In this work, we developed a theoretical framework leading to misclassification of the final size epidemic data for the stochastic SIR (Susceptible-In</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fective</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-Removed), household epidemic model, with false negative and false positive misclassification probabilities. Maximum likelihood based algorithm is then employed for its inference. We then analyzed and compared the estimates of the two dimensional model with those of the three and four dimensional models associated with misclassified final size data over arrange of theoretical parameters, local and global infection rates and corresponding proportion infected in the permissible region, away from its boundaries and misclassification probabilities.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The adequacies of the three models to the final size data are examined. The four and three-dimensional models are found to outperform the two dimensional model on misclassified final size data.In this work, we developed a theoretical framework leading to misclassification of the final size epidemic data for the stochastic SIR (Susceptible-In</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fective</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-Removed), household epidemic model, with false negative and false positive misclassification probabilities. Maximum likelihood based algorithm is then employed for its inference. We then analyzed and compared the estimates of the two dimensional model with those of the three and four dimensional models associated with misclassified final size data over arrange of theoretical parameters, local and global infection rates and corresponding proportion infected in the permissible region, away from its boundaries and misclassification probabilities.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The adequacies of the three models to the final size data are examined. The four and three-dimensional models are found to outperform the two dimensional model on misclassified final size data.
关 键 词:Final Size Epidemic Infectious Period Distribution Maximum Likelihood Es-timates Misclassification Probabilities
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...