检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jixiang Wu Johnie N. Jenkins Jack C. McCarty Jr. Jixiang Wu;Johnie N. Jenkins;Jack C. McCarty Jr.(Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, USA)
机构地区:[1]Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, USA
出 处:《Open Journal of Statistics》2023年第5期746-760,共15页统计学期刊(英文)
摘 要:With the rapid development of DNA technologies, high throughput genomic data have become a powerful leverage to locate desirable genetic loci associated with traits of importance in various crop species. However, current genetic association mapping analyses are focused on identifying individual QTLs. This study aimed to identify a set of QTLs or genetic markers, which can capture genetic variability for marker-assisted selection. Selecting a set with k loci that can maximize genetic variation out of high throughput genomic data is a challenging issue. In this study, we proposed an adaptive sequential replacement (ASR) method, which is considered a variant of the sequential replacement (SR) method. Through Monte Carlo simulation and comparing with four other selection methods: exhaustive, SR method, forward, and backward methods we found that the ASR method sustains consistent and repeatable results comparable to the exhaustive method with much reduced computational intensity.With the rapid development of DNA technologies, high throughput genomic data have become a powerful leverage to locate desirable genetic loci associated with traits of importance in various crop species. However, current genetic association mapping analyses are focused on identifying individual QTLs. This study aimed to identify a set of QTLs or genetic markers, which can capture genetic variability for marker-assisted selection. Selecting a set with k loci that can maximize genetic variation out of high throughput genomic data is a challenging issue. In this study, we proposed an adaptive sequential replacement (ASR) method, which is considered a variant of the sequential replacement (SR) method. Through Monte Carlo simulation and comparing with four other selection methods: exhaustive, SR method, forward, and backward methods we found that the ASR method sustains consistent and repeatable results comparable to the exhaustive method with much reduced computational intensity.
关 键 词:Adaptive Sequential Replacement Association Mapping Exhaustive Method Global Optimal Solution Sequential Replacement Variable Selection
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147