检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gulshan Prakash Malik Vijaya Shankar Varma Gulshan Prakash Malik;Vijaya Shankar Varma(Gurugram, India;Theory Group, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India;Department of Physics and Astrophysics, University of Delhi, Delhi, India)
机构地区:[1]Gurugram, India [2]Theory Group, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India [3]Department of Physics and Astrophysics, University of Delhi, Delhi, India
出 处:《World Journal of Condensed Matter Physics》2023年第4期111-127,共17页凝固态物理国际期刊(英文)
摘 要:Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), where μ, T and H denote the chemical potential, temperature and the applied field, respectively, we provide in this paper fits to the empirical H<sub>c</sub><sub>2</sub>(T) data of H<sub>3</sub>S reported by Mozaffari, et al. (2019) and deal with the issue of whether or not H<sub>3</sub>S exhibits the Meissner effect. Employing a variant of the template given by Dogan and Cohen (2021), we examine in detail the results of Hirsch and Marsiglio (2022) who have claimed that H<sub>3</sub>S does not exhibit the Meissner effect and Minkov, et al. (2023) who have claimed that it does. We are thus led to suggest that monitoring the chemical potential (equivalently, the number density of Cooper pairs N<sub>s</sub> at T = T<sub>c</sub>) should shed new light on the issue being addressed.Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), where μ, T and H denote the chemical potential, temperature and the applied field, respectively, we provide in this paper fits to the empirical H<sub>c</sub><sub>2</sub>(T) data of H<sub>3</sub>S reported by Mozaffari, et al. (2019) and deal with the issue of whether or not H<sub>3</sub>S exhibits the Meissner effect. Employing a variant of the template given by Dogan and Cohen (2021), we examine in detail the results of Hirsch and Marsiglio (2022) who have claimed that H<sub>3</sub>S does not exhibit the Meissner effect and Minkov, et al. (2023) who have claimed that it does. We are thus led to suggest that monitoring the chemical potential (equivalently, the number density of Cooper pairs N<sub>s</sub> at T = T<sub>c</sub>) should shed new light on the issue being addressed.
关 键 词:Compressed H3S Upper and Lower Critical Fields Chemical Potential Generalized Pairing and Number Equations Coherence Length Penetration Depth Meissner Effect
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7