Safety of Future NPPs Must Not Be in Conflict with Economics  

Safety of Future NPPs Must Not Be in Conflict with Economics

在线阅读下载全文

作  者:Vladimir Petrochenko Georgy Toshinsky Oleg Komlev Vladimir Petrochenko;Georgy Toshinsky;Oleg Komlev(JSC “AKME-Engineering”, Moscow, Russia;JSC “SSC RF-IPPE”, Obninsk, Russia)

机构地区:[1]JSC “AKME-Engineering”, Moscow, Russia [2]JSC “SSC RF-IPPE”, Obninsk, Russia

出  处:《World Journal of Nuclear Science and Technology》2016年第4期284-300,共18页核科学与技术国际期刊(英文)

摘  要:The conflict between safety and economics requirements is peculiar to the present nuclear power (NP). The main point of the conflict is that for traditional type reactors the increase of requirements to safety of nuclear power plants (NPP) worsens their economical characteristics. This is caused by large potential energy accumulated in reactor coolant. In the presented paper the opportunity and expediency of changeover to reactors with heavy liquid-metal coolants (HLMC) in future NP is grounded. First of all, this refers to lead-bismuth coolant (LBC) mastered in the process of operating nuclear submarines (NS) reactors. The reactor facilities (RFs) of that type cannot cause destruction of defense barriers and make possible deterministic elimination of severe accidents with catastrophic radioactivity release. So it will make possible to eliminate the highlighted conflict and reasons for existence of population’s radiophobia. Lead-bismuth fast reactor SVBR-100 with electric power of 100 MWe is the reactor facility of that type. The effect of accumulated in coolant potential energy on safety and economics is considered. Main specific features of SVBR-100 technology providing a high level of inherent self-protection and passive safety are presented.The conflict between safety and economics requirements is peculiar to the present nuclear power (NP). The main point of the conflict is that for traditional type reactors the increase of requirements to safety of nuclear power plants (NPP) worsens their economical characteristics. This is caused by large potential energy accumulated in reactor coolant. In the presented paper the opportunity and expediency of changeover to reactors with heavy liquid-metal coolants (HLMC) in future NP is grounded. First of all, this refers to lead-bismuth coolant (LBC) mastered in the process of operating nuclear submarines (NS) reactors. The reactor facilities (RFs) of that type cannot cause destruction of defense barriers and make possible deterministic elimination of severe accidents with catastrophic radioactivity release. So it will make possible to eliminate the highlighted conflict and reasons for existence of population’s radiophobia. Lead-bismuth fast reactor SVBR-100 with electric power of 100 MWe is the reactor facility of that type. The effect of accumulated in coolant potential energy on safety and economics is considered. Main specific features of SVBR-100 technology providing a high level of inherent self-protection and passive safety are presented.

关 键 词:SVBR-100 Reactor Lead-Bismuth Coolant Nuclear Power Plant Inherent Self-Protection Passive Safety 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象