Antibacterial Activity of Green Synthesis Silver Nanoparticles Using Some Wild Edible Plants Commonly Used in Al Baha, Saudi Arabia  

Antibacterial Activity of Green Synthesis Silver Nanoparticles Using Some Wild Edible Plants Commonly Used in Al Baha, Saudi Arabia

在线阅读下载全文

作  者:Abdulaziz Yahya Al-Ghamdi 

机构地区:[1]Department of Biology, Faculty of Science, Al Baha University, Al Baha, Saudi Arabia

出  处:《Advances in Microbiology》2018年第12期938-949,共12页微生物学(英文)

摘  要:In the present study, aqueous extract of Cissus rotundifolia (Wild edible plants) was used as a reducing and capping agent in the formation of silver nanoparticles (AgNPs). UV-visible spectroscopy (Uv-Vis) was used to monitor the formation of AgNPs in the aqueous medium. The green-prepared AgNPs investigated using Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The morphology and size of the benign silver nanoparticles were carried out by the transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM). The susceptibility of bacteria strains against the green synthesis AgNPs was determined using the disk diffusion method. The microorganisms employed were E. coli, K. pneumoniae, B. cereus, S. aureus, C. lbicans and Aspergillus. The results showed the characteristic surface plasmon resonance peak of the AgNPs appeared at approximately 418 - 446 nm. XRD revealed peaks at 38.2, 44.16, 64.24 and 77.22 θ, and the intensity of these peaks enhanced when using microwave curing compared to ambient temperature. SEM and TEM results showed that the silver nanoparticles have a spherical shape and the particle size for samples is less than 37 nm. FTIR spectroscopy measurements showed the binding of organic compounds on the surface of the silver nanoparticles. The highest antibacterial activity was enhanced with increasing of AgNPs dose and with increasing of extract ration against most of microorganisms.In the present study, aqueous extract of Cissus rotundifolia (Wild edible plants) was used as a reducing and capping agent in the formation of silver nanoparticles (AgNPs). UV-visible spectroscopy (Uv-Vis) was used to monitor the formation of AgNPs in the aqueous medium. The green-prepared AgNPs investigated using Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The morphology and size of the benign silver nanoparticles were carried out by the transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM). The susceptibility of bacteria strains against the green synthesis AgNPs was determined using the disk diffusion method. The microorganisms employed were E. coli, K. pneumoniae, B. cereus, S. aureus, C. lbicans and Aspergillus. The results showed the characteristic surface plasmon resonance peak of the AgNPs appeared at approximately 418 - 446 nm. XRD revealed peaks at 38.2, 44.16, 64.24 and 77.22 θ, and the intensity of these peaks enhanced when using microwave curing compared to ambient temperature. SEM and TEM results showed that the silver nanoparticles have a spherical shape and the particle size for samples is less than 37 nm. FTIR spectroscopy measurements showed the binding of organic compounds on the surface of the silver nanoparticles. The highest antibacterial activity was enhanced with increasing of AgNPs dose and with increasing of extract ration against most of microorganisms.

关 键 词:Green Synthesis AGNPS FTIR XRD SEM-EDX & TEM Biological Activity 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象