Effects of planting dates, densities, and varieties on ecophysiology of pigeonpea in the Southeastern United States  

Effects of planting dates, densities, and varieties on ecophysiology of pigeonpea in the Southeastern United States

在线阅读下载全文

作  者:Corie Wilson Dafeng Hui Emeka Nwaneri Jun Wang Qi Deng Desh Duseja Fisseha Tegegne 

机构地区:[1]Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, USA [2]Department of Biological Sciences, Tennessee State University, Nashville, USA [3]Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanic Garden, Chinese Academy of Sciences, Guangzhou, China

出  处:《Agricultural Sciences》2012年第2期147-152,共6页农业科学(英文)

摘  要:Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop widely cultivated in tropical and subtropical climates of the world. Interest in this crop is growing in many countries because of its multiple uses as a source of food, feed, fuel, and fertilizer. However, the performance of pigeonpea in Southeastern US has not been well investigated. We conducted an experiment in Nashville, Tennessee to test the effects of two planting dates, three densities, and four varieties on pigeonpea ecophysiology that included leaf photosynthesis, stomatal conductance, transpiration, water use efficiency (WUE), leaf area index (LAI) and soil respiration. Results indicated that the plants in the late planting plots had higher photosynthetic rate, stomatal conductance and transpiration. There were significant differences in the levels of leaf photosynthesis, stomatal conductance, transpiration, WUE and LAI among all four varieties. W3 and G1 showed higher photosynthetic rate and LAI than W1, and W3 had higher WUE than G2 and W1. Planting densities had no significant effect on all variables studied. This study indicated that late planting of variety G1 or W3 resulted in higher WUE and yield, but did no significant influence soil CO2 emission.Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop widely cultivated in tropical and subtropical climates of the world. Interest in this crop is growing in many countries because of its multiple uses as a source of food, feed, fuel, and fertilizer. However, the performance of pigeonpea in Southeastern US has not been well investigated. We conducted an experiment in Nashville, Tennessee to test the effects of two planting dates, three densities, and four varieties on pigeonpea ecophysiology that included leaf photosynthesis, stomatal conductance, transpiration, water use efficiency (WUE), leaf area index (LAI) and soil respiration. Results indicated that the plants in the late planting plots had higher photosynthetic rate, stomatal conductance and transpiration. There were significant differences in the levels of leaf photosynthesis, stomatal conductance, transpiration, WUE and LAI among all four varieties. W3 and G1 showed higher photosynthetic rate and LAI than W1, and W3 had higher WUE than G2 and W1. Planting densities had no significant effect on all variables studied. This study indicated that late planting of variety G1 or W3 resulted in higher WUE and yield, but did no significant influence soil CO2 emission.

关 键 词:Leaf Area Index PHOTOSYNTHESIS Soil RESPIRATION TRANSPIRATION Water Use Efficiency 

分 类 号:S5[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象