Impact of Smart Valley on Soil Moisture Content and Rice Yield in Some Lowlands in Burkina Faso  

Impact of Smart Valley on Soil Moisture Content and Rice Yield in Some Lowlands in Burkina Faso

在线阅读下载全文

作  者:Bama Nati Aïssata Delphine Dossou Yovo Elliott Gbané Mahanat Vanessa Gnépi Elvire Soulama Issa Ibrahima Ouedraogo Adama Ouédraogo Bama Nati Aïssata Delphine;Dossou Yovo Elliott;Gbané Mahanat;Vanessa Gnépi Elvire;Soulama Issa;Ibrahima Ouedraogo;Adama Ouédraogo(Institut de l’Environnement et de Recherches Agricoles, Département de Production Végétale, INERA, Ouagadougou, Burkina Faso;Africa Rice Center (AfricaRice), Cotonou, Benin;Institut International d’Ingénierie de l’Eau et de l’Environnement, Laboratoire Eaux Hydro-Systèmes et Agriculture, Ouagadougou, Burkina Faso;Centre Agricole Polyvalent de Martourkou, Bobo-Dioulasso, Burkina Faso)

机构地区:[1]Institut de l’Environnement et de Recherches Agricoles, Département de Production Végétale, INERA, Ouagadougou, Burkina Faso [2]Africa Rice Center (AfricaRice), Cotonou, Benin [3]Institut International d’Ingénierie de l’Eau et de l’Environnement, Laboratoire Eaux Hydro-Systèmes et Agriculture, Ouagadougou, Burkina Faso [4]Centre Agricole Polyvalent de Martourkou, Bobo-Dioulasso, Burkina Faso

出  处:《Agricultural Sciences》2020年第9期860-868,共9页农业科学(英文)

摘  要:To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to satisfy the needs which are enormous. The Smart-Valley technology which is actually popularized in certain coastal countries of West Africa would therefore be a boon to increase the productivity of the Sudanese lowlands if it well regulates runoff. The object of this study was therefore to know if smart valley technology could increase soil moisture in order to mitigate the impact of drought’s pockets on rice cultivation in the Sudanese lowlands. The experiment takes place in three lowlands during the rainy seasons 2018 and 2019. The climatic data comes from the meteorological stations in the study areas as well as those installed on the sites. The infiltration measurements were carried out using the double Muntz ring. The soil moisture measurement device consisted of a smart valley area of 5 ha and an undeveloped area of 5 ha per site. Sixteen tubes were installed per lowland allowing the humidity to be measured at a depth of 10, 20, 30, 40 cm using a probe. Four rice varieties, Orylux6, FKR62N, FKR19 and FKR64 were tested on plots of 0.25 ha per variety in the smart valley and undeveloped parts. The results showed that the humidity level was 12% higher in the smart-valley plots throughout the cycle compared to the unmanaged area. In addition, humidity decreases rapidly in unmanaged plots as rain becomes increasingly scarce. Finally, the smart-valley development allowed an average increase in rice yields of 21% compared to the average yield of undeveloped plots.To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to satisfy the needs which are enormous. The Smart-Valley technology which is actually popularized in certain coastal countries of West Africa would therefore be a boon to increase the productivity of the Sudanese lowlands if it well regulates runoff. The object of this study was therefore to know if smart valley technology could increase soil moisture in order to mitigate the impact of drought’s pockets on rice cultivation in the Sudanese lowlands. The experiment takes place in three lowlands during the rainy seasons 2018 and 2019. The climatic data comes from the meteorological stations in the study areas as well as those installed on the sites. The infiltration measurements were carried out using the double Muntz ring. The soil moisture measurement device consisted of a smart valley area of 5 ha and an undeveloped area of 5 ha per site. Sixteen tubes were installed per lowland allowing the humidity to be measured at a depth of 10, 20, 30, 40 cm using a probe. Four rice varieties, Orylux6, FKR62N, FKR19 and FKR64 were tested on plots of 0.25 ha per variety in the smart valley and undeveloped parts. The results showed that the humidity level was 12% higher in the smart-valley plots throughout the cycle compared to the unmanaged area. In addition, humidity decreases rapidly in unmanaged plots as rain becomes increasingly scarce. Finally, the smart-valley development allowed an average increase in rice yields of 21% compared to the average yield of undeveloped plots.

关 键 词:Smart Valley Soil Moisture Lowland Development Rice Productivity RAIN 

分 类 号:S51[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象