Gamma-Ray-Induced Genetic Variability for Yield Traits in M4 Generation in Upland Rice  

Gamma-Ray-Induced Genetic Variability for Yield Traits in M4 Generation in Upland Rice

在线阅读下载全文

作  者:Habibata Tinta Valentin Stanislas Edgar Traoré Minimassom Philippe Nikiéma Arlette Wend-Yida Yasmine Kaboré Siébou Palé Hamidou Traoré Mahamadou Sawadogo Djibril Yonli Habibata Tinta;Valentin Stanislas Edgar Traoré;Minimassom Philippe Nikiéma;Arlette Wend-Yida Yasmine Kaboré;Siébou Palé;Hamidou Traoré;Mahamadou Sawadogo;Djibril Yonli(Universit Joseph KI-ZERBO (UJKZ), Unit de Formation et de Recherches en Sciences de la Vie et de la Terre (UFR/SVT), Laboratoire Biosciences, Ouagadougou, Burkina Faso;Institut de lEnvironnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso)

机构地区:[1]Universit Joseph KI-ZERBO (UJKZ), Unit de Formation et de Recherches en Sciences de la Vie et de la Terre (UFR/SVT), Laboratoire Biosciences, Ouagadougou, Burkina Faso [2]Institut de lEnvironnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso

出  处:《Agricultural Sciences》2025年第2期240-255,共16页农业科学(英文)

摘  要:Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were therefore irradiated with doses 300, 350 and 400 Gy. The irradiated seeds were sown and the panicles of the M1 plants were individually harvested, and then were advanced to M4 using the “one panicle - one progeny” method. The agronomic performance of M4 lines was compared to that of their parent. The gamma ray mutagenesis has induced significant variability in five yield components, i.e., plant height, main panicle length, total numbers of tillers and productive tillers and paddy grain yield between mutant lines. The highest variabilities were shown for the total number of tillers and the number of productive tillers as well as FKR45N (CV% = 40 % and 36%) and FKR47N (CV% = 31% and 30%) mutant lines. Principal component analysis led to rank the mutant lines from each variety in three clusters. The Pearson correlation showed that the paddy grain yield was significantly and positively correlated with the number of productive tillers (r = 0.61) and plant height (r = 0.66) for FKR47N mutant lines, and these correlation coefficients were r = 0.52 and r = 0.51 for FKR45N mutant lines, respectively. Gamma-ray irradiation also induced an earliness of 50% flowering of 62 days after sowing (DAS) in two FKR45N mutant lines and 67 DAS in one of KR47N mutant lines. The paddy grain yield was improved by 120% and 20% in two FKR45N and FKR47N mutant lines, respectively. A dwarf FKR45N mutant line with an early flowering of 67 DAS and a paddy grain yield (2.34 t ha−1) was generated. These results suggested that any positive increase in the six quantitative traits will increase the paddy grain yield.Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were therefore irradiated with doses 300, 350 and 400 Gy. The irradiated seeds were sown and the panicles of the M1 plants were individually harvested, and then were advanced to M4 using the “one panicle - one progeny” method. The agronomic performance of M4 lines was compared to that of their parent. The gamma ray mutagenesis has induced significant variability in five yield components, i.e., plant height, main panicle length, total numbers of tillers and productive tillers and paddy grain yield between mutant lines. The highest variabilities were shown for the total number of tillers and the number of productive tillers as well as FKR45N (CV% = 40 % and 36%) and FKR47N (CV% = 31% and 30%) mutant lines. Principal component analysis led to rank the mutant lines from each variety in three clusters. The Pearson correlation showed that the paddy grain yield was significantly and positively correlated with the number of productive tillers (r = 0.61) and plant height (r = 0.66) for FKR47N mutant lines, and these correlation coefficients were r = 0.52 and r = 0.51 for FKR45N mutant lines, respectively. Gamma-ray irradiation also induced an earliness of 50% flowering of 62 days after sowing (DAS) in two FKR45N mutant lines and 67 DAS in one of KR47N mutant lines. The paddy grain yield was improved by 120% and 20% in two FKR45N and FKR47N mutant lines, respectively. A dwarf FKR45N mutant line with an early flowering of 67 DAS and a paddy grain yield (2.34 t ha−1) was generated. These results suggested that any positive increase in the six quantitative traits will increase the paddy grain yield.

关 键 词:Upland Rice MUTAGENESIS Genetic Variability Agronomic Performance 

分 类 号:S51[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象