机构地区:[1]Gabinete de Arqueología, Oficina del Historiador de la Ciudad, Habana Vieja, Cuba [2]Instituto de Geografia Tropical, Ministerio de Ciencia, Tecnología y Medio Ambiente, Ciudad Habana, Cuba [3]Unidad Iztapalapa, Departamento de Hidrobiología, Universidad Autónoma Metropolitana, Cd de México, México [4]Departamento de Recursos Naturales, Academia de Investigación y Ciencia, Universidad Tecnológica de Calakmul, Calakmul, México
出 处:《American Journal of Plant Sciences》2021年第4期573-585,共13页美国植物学期刊(英文)
摘 要:The knowledge of the nutritional requirements and their relation to the physiology of marine algae growth is key to incorporate new species into aquaculture, whose dynamics tend to be largely unknown. The use of <i><span style="font-family:Verdana;">Alsidium triquetrum</span></i><span style="font-family:Verdana;"> in the pharmacological industry depends on its availability in the </span><span style="font-family:Verdana;">natural environment, occasionally scarce. As macroalgae cultivation gains</span><span style="font-family:Verdana;"> momentum worldwide, it is important to know how the effects of nutrients are modulated in the thallus during cultivation. The linking of the relative growth rates (RGR) of </span><i><span style="font-family:Verdana;">A. triquetrum</span></i><span style="font-family:Verdana;"> and their relation with the macronutrients N (nitrogen), P (phosphorus) and K (potassium) at the tissue level under culture conditions constitutes the main contribution of this article. P levels tend to decrease as the plant completes its development. Both the concentration of N and P are higher in the stipe for the month of July, N (25.31 ± 0.26) vs P (0.846 ± 0.02) period when the highest vegetative development is reached. The N and P modulate the patterns of the species’ development over the an</span><span style="font-family:Verdana;">nual cycle, unlike K, which is not considered a limiting factor. When the</span><span style="font-family:Verdana;"> tem</span><span style="font-family:Verdana;">perature and lighting are not favorable for growth, the plant simply accu</span><span style="font-family:Verdana;">mulates these compounds. As environmental conditions change, these </span><span style="font-family:Verdana;">stored</span><span style="font-family:Verdana;"> compounds are actively used in their growth. The specimens with an initial weight of 50 g present the best accumulated biomass (RGR) throughout the annual cycle.</span>The knowledge of the nutritional requirements and their relation to the physiology of marine algae growth is key to incorporate new species into aquaculture, whose dynamics tend to be largely unknown. The use of <i><span style="font-family:Verdana;">Alsidium triquetrum</span></i><span style="font-family:Verdana;"> in the pharmacological industry depends on its availability in the </span><span style="font-family:Verdana;">natural environment, occasionally scarce. As macroalgae cultivation gains</span><span style="font-family:Verdana;"> momentum worldwide, it is important to know how the effects of nutrients are modulated in the thallus during cultivation. The linking of the relative growth rates (RGR) of </span><i><span style="font-family:Verdana;">A. triquetrum</span></i><span style="font-family:Verdana;"> and their relation with the macronutrients N (nitrogen), P (phosphorus) and K (potassium) at the tissue level under culture conditions constitutes the main contribution of this article. P levels tend to decrease as the plant completes its development. Both the concentration of N and P are higher in the stipe for the month of July, N (25.31 ± 0.26) vs P (0.846 ± 0.02) period when the highest vegetative development is reached. The N and P modulate the patterns of the species’ development over the an</span><span style="font-family:Verdana;">nual cycle, unlike K, which is not considered a limiting factor. When the</span><span style="font-family:Verdana;"> tem</span><span style="font-family:Verdana;">perature and lighting are not favorable for growth, the plant simply accu</span><span style="font-family:Verdana;">mulates these compounds. As environmental conditions change, these </span><span style="font-family:Verdana;">stored</span><span style="font-family:Verdana;"> compounds are actively used in their growth. The specimens with an initial weight of 50 g present the best accumulated biomass (RGR) throughout the annual cycle.</span>
关 键 词:Alsidium triquetrum Culture Phosphorus MACRONUTRIENTS Nitrogen Potassium Growth Rate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...