机构地区:[1]USDA-ARS-Beltsville Agricultural Research Center, Beltsville, USA [2]Department of Biological Science, State University of Santa Cruz, Ilhéus, Brazil [3]Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, USA
出 处:《American Journal of Plant Sciences》2021年第5期818-839,共22页美国植物学期刊(英文)
摘 要:In many countries cacao (</span><i><span style="font-family:Verdana;">Theobroma cacao</span></i><span style="font-family:Verdana;"> L.) is invariably grown as an understory crop in agroforestry types of cropping systems and subjected to low levels photosynthetic photon flux density (PPFD) due to presence of large number of upper story shade trees with poorly managed canopy structure. In recent years carbon dioxide concentration in the atmosphere is steadily increasing and it is unclear what impact this will have on performance of cacao grown under shade of upper story shade trees. A climatically controlled greenhouse experiment was undertaken to evaluate the effects of ambient and elevated carbon dioxide (400 and 700 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) and three levels of PPFD (100, 200, and 400 μmol·m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">·s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) on growth, and macro- and micronutrient use efficiency of three genetically contrasting cacao genotypes (CCN 51, VB 1117 and NO 81). Intraspecific variations were observed in cacao genotypes for growth parameters at ambient to elevated carbon dioxide and low to adequate levels of PPFD. With the exceptions of total root length and leaf area, irrespective of carbon dioxide and PPFD levels, all three genotypes showed significant differences in all the growth parameters. For all the cacao genotypes, increasing PPFD from 100 to 400 μmol·m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">·s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> and carbon dioxide from 400 to 700 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> increased overall growth parameters such asIn many countries cacao (</span><i><span style="font-family:Verdana;">Theobroma cacao</span></i><span style="font-family:Verdana;"> L.) is invariably grown as an understory crop in agroforestry types of cropping systems and subjected to low levels photosynthetic photon flux density (PPFD) due to presence of large number of upper story shade trees with poorly managed canopy structure. In recent years carbon dioxide concentration in the atmosphere is steadily increasing and it is unclear what impact this will have on performance of cacao grown under shade of upper story shade trees. A climatically controlled greenhouse experiment was undertaken to evaluate the effects of ambient and elevated carbon dioxide (400 and 700 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) and three levels of PPFD (100, 200, and 400 μmol·m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">·s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) on growth, and macro- and micronutrient use efficiency of three genetically contrasting cacao genotypes (CCN 51, VB 1117 and NO 81). Intraspecific variations were observed in cacao genotypes for growth parameters at ambient to elevated carbon dioxide and low to adequate levels of PPFD. With the exceptions of total root length and leaf area, irrespective of carbon dioxide and PPFD levels, all three genotypes showed significant differences in all the growth parameters. For all the cacao genotypes, increasing PPFD from 100 to 400 μmol·m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">·s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> and carbon dioxide from 400 to 700 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> increased overall growth parameters such as
关 键 词:Relative Growth Rate Net Assimilation Rate Mineral Nutrient Influx and Transport Mineral Nutrient Uptake Efficiency
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...