Gas Exchange Rates of Texas Persimmon (Diospyros texana) in Central Texas Woodlands  

Gas Exchange Rates of Texas Persimmon (Diospyros texana) in Central Texas Woodlands

在线阅读下载全文

作  者:Matthew B. Grunstra Oscar W. Van Auken Matthew B. Grunstra;Oscar W. Van Auken(Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX, USA)

机构地区:[1]Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX, USA

出  处:《American Journal of Plant Sciences》2024年第5期329-348,共20页美国植物学期刊(英文)

摘  要:Diospyros texana (Texas persimmon) is a secondary species in most Juniperus ashei/Quercus fusiformis woodlands in central Texas. It has high density, but plants are mostly in the community understory. Light response curves at ambient and elevated levels of CO<sub>2</sub> and temperature were measured for D. texana. The A<sub>net</sub> (photosynthetic rate) increased significantly as both light level and CO<sub>2</sub> levels increased but not temperature. The A<sub>max</sub> (maximum photosynthetic rate) of D. texana in full sun at elevated levels of CO<sub>2</sub> was increased for all treatments. Stomatal conductance increased with levels of CO<sub>2</sub> but only if the interaction was removed from the model. Intercellular levels of CO<sub>2</sub> increased with both temperature and CO<sub>2</sub> treatments as did water use efficiency (WUE). Furthermore, light saturation (L<sub>sat</sub>) increased with CO<sub>2</sub> treatments and light compensation (L<sub>cp</sub>) increased with temperature. The dark respiration (R<sub>d</sub>) increased with both temperature and CO<sub>2</sub> treatments. Markov population models suggested D. texana populations would remain ecologically similar in the future. However, sub-canopy light levels and herbivory should be considered when examining population projections. For example, Juniperus ashei juveniles are not recruited into any canopy unless there are high light levels. Herbivory reduces the success of Quercus juveniles from reaching the canopy. These factors do not seem to be a problem for D. texana juveniles which would allow them to reach the canopy without need of a high light gap and are not prevented by herbivory. Thus, Juniperus/Quercus woodlands will change in the future to woodlands with D. texana a more common species.Diospyros texana (Texas persimmon) is a secondary species in most Juniperus ashei/Quercus fusiformis woodlands in central Texas. It has high density, but plants are mostly in the community understory. Light response curves at ambient and elevated levels of CO<sub>2</sub> and temperature were measured for D. texana. The A<sub>net</sub> (photosynthetic rate) increased significantly as both light level and CO<sub>2</sub> levels increased but not temperature. The A<sub>max</sub> (maximum photosynthetic rate) of D. texana in full sun at elevated levels of CO<sub>2</sub> was increased for all treatments. Stomatal conductance increased with levels of CO<sub>2</sub> but only if the interaction was removed from the model. Intercellular levels of CO<sub>2</sub> increased with both temperature and CO<sub>2</sub> treatments as did water use efficiency (WUE). Furthermore, light saturation (L<sub>sat</sub>) increased with CO<sub>2</sub> treatments and light compensation (L<sub>cp</sub>) increased with temperature. The dark respiration (R<sub>d</sub>) increased with both temperature and CO<sub>2</sub> treatments. Markov population models suggested D. texana populations would remain ecologically similar in the future. However, sub-canopy light levels and herbivory should be considered when examining population projections. For example, Juniperus ashei juveniles are not recruited into any canopy unless there are high light levels. Herbivory reduces the success of Quercus juveniles from reaching the canopy. These factors do not seem to be a problem for D. texana juveniles which would allow them to reach the canopy without need of a high light gap and are not prevented by herbivory. Thus, Juniperus/Quercus woodlands will change in the future to woodlands with D. texana a more common species.

关 键 词:Replacement Dynamics Ecological Succession CO2 Concentrations Temperature Levels Photosynthetic Rates Drought Tolerance HERBIVORY Species Replacement ENCROACHMENT Juniper 

分 类 号:S66[农业科学—果树学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象